IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54594-3.html
   My bibliography  Save this article

A bulk Schottky junction for high-sensitivity portable radiation detectors

Author

Listed:
  • Yihan Zhang

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei Comprehensive National Science Center)

  • Zongming Huang

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei Comprehensive National Science Center)

  • Chenchen Peng

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei Comprehensive National Science Center)

  • Ning Gao

    (University of Science and Technology of China)

  • Xie George Xu

    (University of Science and Technology of China)

  • Yaping Li

    (University of Science and Technology of China)

  • Cheng Zheng

    (University of Science and Technology of China)

  • Wenjing Chen

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei Comprehensive National Science Center)

  • Yidong Yang

    (University of Science and Technology of China)

  • Jingjing Zhao

    (Southwest University)

  • Junjie Yang

    (University of Science and Technology of China
    Hefei Comprehensive National Science Center
    University of Science and Technology of China)

  • Tao Chen

    (University of Science and Technology of China
    Hefei Comprehensive National Science Center
    University of Science and Technology of China)

  • Zhengguo Xiao

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei Comprehensive National Science Center)

Abstract

The thickness of X-ray detectors needs to reach hundreds of micrometers to absorb X-ray, and therefore, high voltages over tens or hundreds of volts should be applied to extract X-ray-generated carriers. Here, we propose a bulk Schottky junction for X-ray detection using interpenetrated macroporous-carbon electrodes and metal-halide perovskite networks. The X-ray-generated holes are extracted by the macroporous-carbon electrodes under the built-in electric field, while the electrons in the perovskite phase result in a high gain effect. A high sensitivity of 1.42×105 μC Gyair−1 cm−2 and a low detection limit of 48 nGyair s−1 at a low voltage of −1 V are achieved. We fabricated a dry battery-powered portable X-ray alarm prototype. The pixel detector shows a decent stability under X-ray exposure, and a spatial resolution of up to 5.0 lp mm−1, and the detector arrays also exhibit remarkable uniformity, demonstrating its potential application in X-ray imaging.

Suggested Citation

  • Yihan Zhang & Zongming Huang & Chenchen Peng & Ning Gao & Xie George Xu & Yaping Li & Cheng Zheng & Wenjing Chen & Yidong Yang & Jingjing Zhao & Junjie Yang & Tao Chen & Zhengguo Xiao, 2024. "A bulk Schottky junction for high-sensitivity portable radiation detectors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54594-3
    DOI: 10.1038/s41467-024-54594-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54594-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54594-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ye Liu & Xiaopeng Zheng & Yanjun Fang & Ying Zhou & Zhenyi Ni & Xun Xiao & Shangshang Chen & Jinsong Huang, 2021. "Ligand assisted growth of perovskite single crystals with low defect density," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Haotong Wei & Jinsong Huang, 2019. "Halide lead perovskites for ionizing radiation detection," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Qiushui Chen & Jing Wu & Xiangyu Ou & Bolong Huang & Jawaher Almutlaq & Ayan A. Zhumekenov & Xinwei Guan & Sanyang Han & Liangliang Liang & Zhigao Yi & Juan Li & Xiaoji Xie & Yu Wang & Ying Li & Diany, 2018. "All-inorganic perovskite nanocrystal scintillators," Nature, Nature, vol. 561(7721), pages 88-93, September.
    4. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yong Churl Kim & Kwang Hee Kim & Dae-Yong Son & Dong-Nyuk Jeong & Ja-Young Seo & Yeong Suk Choi & In Taek Han & Sang Yoon Lee & Nam-Gyu Park, 2017. "Printable organometallic perovskite enables large-area, low-dose X-ray imaging," Nature, Nature, vol. 550(7674), pages 87-91, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Song & Xinyuan Du & Xin He & Hanqi Wang & Zhiqiang Liu & Haodi Wu & Hongde Luo & Libo Jin & Ling Xu & Zhiping Zheng & Guangda Niu & Jiang Tang, 2023. "Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Sujung Min & Hara Kang & Bumkyung Seo & JaeHak Cheong & Changhyun Roh & Sangbum Hong, 2021. "A Review of Nanomaterial Based Scintillators," Energies, MDPI, vol. 14(22), pages 1-43, November.
    6. Chao Ge & Yachao Li & Haiying Song & Qiyuan Xie & Leilei Zhang & Xiaoran Ma & Junfeng Liu & Xiangjing Guo & Yinzhou Yan & Danmin Liu & Wenkai Zhang & Shibing Liu & Yang Liu, 2024. "Anisotropic carrier dynamics and laser-fabricated luminescent patterns on oriented single-crystal perovskite wafers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yanliang Liu & Chaosong Gao & Dong Li & Xin Zhang & Jiongtao Zhu & Meng Wu & Wenjun Liu & Tongyu Shi & Xingchen He & Jiahong Wang & Hao Huang & Zonghai Sheng & Dong Liang & Xue-Feng Yu & Hairong Zheng, 2024. "Dynamic X-ray imaging with screen-printed perovskite CMOS array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Liangrui He & Liyang Wang & Xujiang Yu & Yizhang Tang & Zhao Jiang & Guoliang Yang & Zhuang Liu & Wanwan Li, 2024. "Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Dou Zhao & Ruiling Gao & Wei Cheng & Mengyao Wen & Xinlei Zhang & Tomoyuki Yokota & Paul Sellin & Shengyuan A. Yang & Li Shang & Chongjian Zhou & Takao Someya & Wanqi Jie & Yadong Xu, 2024. "Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Zhi Yang & Jisong Yao & Leimeng Xu & Wenxuan Fan & Jizhong Song, 2024. "Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Burak Guzelturk & Benjamin T. Diroll & James P. Cassidy & Dulanjan Harankahage & Muchuan Hua & Xiao-Min Lin & Vasudevan Iyer & Richard D. Schaller & Benjamin J. Lawrie & Mikhail Zamkov, 2024. "Bright and durable scintillation from colloidal quantum shells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    20. E. Kirstein & N. E. Kopteva & D. R. Yakovlev & E. A. Zhukov & E. V. Kolobkova & M. S. Kuznetsova & V. V. Belykh & I. A. Yugova & M. M. Glazov & M. Bayer & A. Greilich, 2023. "Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54594-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.