IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08981-w.html
   My bibliography  Save this article

Halide lead perovskites for ionizing radiation detection

Author

Listed:
  • Haotong Wei

    (University of North Carolina)

  • Jinsong Huang

    (University of North Carolina)

Abstract

Halide lead perovskites have attracted increasing attention in recent years for ionizing radiation detection due to their strong stopping power, defect-tolerance, large mobility-lifetime (μτ) product, tunable bandgap and simple single crystal growth from low-cost solution processes. In this review, we start with the requirement of material properties for high performance ionizing radiation detection based on direct detection mechanisms for applications in X-ray imaging and γ-ray energy spectroscopy. By comparing the performances of halide perovskites radiation detectors with current state-of-the-art ionizing radiation detectors, we show the promising features and challenges of halide perovskites as promising radiation detectors.

Suggested Citation

  • Haotong Wei & Jinsong Huang, 2019. "Halide lead perovskites for ionizing radiation detection," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08981-w
    DOI: 10.1038/s41467-019-08981-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08981-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08981-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Kirstein & D. R. Yakovlev & M. M. Glazov & E. A. Zhukov & D. Kudlacik & I. V. Kalitukha & V. F. Sapega & G. S. Dimitriev & M. A. Semina & M. O. Nestoklon & E. L. Ivchenko & N. E. Kopteva & D. N. Di, 2022. "The Landé factors of electrons and holes in lead halide perovskites: universal dependence on the band gap," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    4. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Nan Gan & Xin Zou & Mengyang Dong & Yanze Wang & Xiao Wang & Anqi Lv & Zhicheng Song & Yuanyuan Zhang & Wenqi Gong & Zhu Zhao & Ziyang Wang & Zixing Zhou & Huili Ma & Xiaowang Liu & Qiushui Chen & Hui, 2022. "Organic phosphorescent scintillation from copolymers by X-ray irradiation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Sujung Min & Hara Kang & Bumkyung Seo & JaeHak Cheong & Changhyun Roh & Sangbum Hong, 2021. "A Review of Nanomaterial Based Scintillators," Energies, MDPI, vol. 14(22), pages 1-43, November.
    7. Kai Peng & Renjie Tao & Louis Haeberlé & Quanwei Li & Dafei Jin & Graham R. Fleming & Stéphane Kéna-Cohen & Xiang Zhang & Wei Bao, 2022. "Room-temperature polariton quantum fluids in halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Zihao Song & Xinyuan Du & Xin He & Hanqi Wang & Zhiqiang Liu & Haodi Wu & Hongde Luo & Libo Jin & Ling Xu & Zhiping Zheng & Guangda Niu & Jiang Tang, 2023. "Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Wanting Pan & Yuhong He & Weijun Li & Lulu Liu & Keke Guo & Jianglei Zhang & Chao Wang & Bao Li & Hu Huang & Junhu Zhang & Bai Yang & Haotong Wei, 2024. "Cation-π interactions enabled water-stable perovskite X-ray flat mini-panel imager," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08981-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.