IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51482-8.html
   My bibliography  Save this article

Efficient metal free organic radical scintillators

Author

Listed:
  • Ansheng Luo

    (Nanjing University of Posts & Telecommunications)

  • Jingru Zhang

    (Nanjing University of Posts & Telecommunications)

  • Dongjie Xiao

    (Nanjing University of Posts & Telecommunications)

  • Gaozhan Xie

    (Nanjing University of Posts & Telecommunications)

  • Xinqi Xu

    (Fuzhou University)

  • Qingxian Zhao

    (Southeast University)

  • Chengxi Sun

    (Nanjing University of Posts & Telecommunications)

  • Yanzhang Li

    (Nanjing University of Posts & Telecommunications)

  • Zehua Zhang

    (Nanjing University of Posts & Telecommunications)

  • Ping Li

    (Nanjing University of Posts & Telecommunications)

  • Shouhua Luo

    (Southeast University)

  • Xiaoji Xie

    (Nanjing Tech University (Nanjing Tech))

  • Qiming Peng

    (Nanjing Tech University (Nanjing Tech))

  • Huanhuan Li

    (Nanjing University of Posts & Telecommunications)

  • Runfeng Chen

    (Nanjing University of Posts & Telecommunications)

  • Qiushui Chen

    (Fuzhou University)

  • Ye Tao

    (Nanjing University of Posts & Telecommunications
    Songshan Lake Materials Laboratory)

  • Wei Huang

    (Nanjing University of Posts & Telecommunications
    Nanjing Tech University (Nanjing Tech)
    Northwestern Polytechnical University)

Abstract

The development of high-performance metal-free organic X-ray scintillators (OXSTs), characterized by a synergistic combination of robust X-ray absorption, efficient exciton utilization, and short luminescence lifetimes, poses a considerable challenge. Here we present an effective strategy for achieving augmented X-ray scintillation through the utilization of halogenated open-shell organic radical scintillators. Our experimental results demonstrate that the synthesized scintillators exhibit strong X-ray absorption derived from halogen atoms, display efficacious X-ray stability, and theoretically achieve 100% exciton utilization efficiency with a short lifetime (∼18 ns) due to spin-allowed doublet transitions. The superior X-ray scintillation performance exhibited by these organic radicals is not only exploitable in X-ray radiography for contrast imaging of various objects but also applicable in a medical high-resolution micro-computer-tomography system for the clear visualization of fibrous veins within a bamboo stick. Our study substantiates the promise of organic radicals as prospective candidates for OXSTs, offering valuable insights and a roadmap for the development of advanced organic radical scintillators geared towards achieving high-quality X-ray radiography.

Suggested Citation

  • Ansheng Luo & Jingru Zhang & Dongjie Xiao & Gaozhan Xie & Xinqi Xu & Qingxian Zhao & Chengxi Sun & Yanzhang Li & Zehua Zhang & Ping Li & Shouhua Luo & Xiaoji Xie & Qiming Peng & Huanhuan Li & Runfeng , 2024. "Efficient metal free organic radical scintillators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51482-8
    DOI: 10.1038/s41467-024-51482-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51482-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51482-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiangyu Ou & Xian Qin & Bolong Huang & Jie Zan & Qinxia Wu & Zhongzhu Hong & Lili Xie & Hongyu Bian & Zhigao Yi & Xiaofeng Chen & Yiming Wu & Xiaorong Song & Juan Li & Qiushui Chen & Huanghao Yang & X, 2021. "High-resolution X-ray luminescence extension imaging," Nature, Nature, vol. 590(7846), pages 410-415, February.
    2. Xin Ai & Emrys W. Evans & Shengzhi Dong & Alexander J. Gillett & Haoqing Guo & Yingxin Chen & Timothy J. H. Hele & Richard H. Friend & Feng Li, 2018. "Efficient radical-based light-emitting diodes with doublet emission," Nature, Nature, vol. 563(7732), pages 536-540, November.
    3. Xiao Wang & Wenjing Sun & Huifang Shi & Huili Ma & Guowei Niu & Yuxin Li & Jiahuan Zhi & Xiaokang Yao & Zhicheng Song & Lei Chen & Shi Li & Guohui Yang & Zixing Zhou & Yixiao He & Shuli Qu & Min Wu & , 2022. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Qiushui Chen & Jing Wu & Xiangyu Ou & Bolong Huang & Jawaher Almutlaq & Ayan A. Zhumekenov & Xinwei Guan & Sanyang Han & Liangliang Liang & Zhigao Yi & Juan Li & Xiaoji Xie & Yu Wang & Ying Li & Diany, 2018. "All-inorganic perovskite nanocrystal scintillators," Nature, Nature, vol. 561(7721), pages 88-93, September.
    5. Liang-Jin Xu & Xinsong Lin & Qingquan He & Michael Worku & Biwu Ma, 2020. "Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Liangrui He & Liyang Wang & Xujiang Yu & Yizhang Tang & Zhao Jiang & Guoliang Yang & Zhuang Liu & Wanwan Li, 2024. "Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yun-Lan Li & Hai-Ling Wang & Zhong-Hong Zhu & Yu-Feng Wang & Fu-Pei Liang & Hua-Hong Zou, 2024. "Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Enhai Song & Meihua Chen & Zitao Chen & Yayun Zhou & Weijie Zhou & Hong-Tao Sun & Xianfeng Yang & Jiulin Gan & Shi Ye & Qinyuan Zhang, 2022. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Ziwei Liu & Jingning Wu & Chen Cai & Bo Yang & Zhi-mei Qi, 2022. "Flexible hyperspectral surface plasmon resonance microscopy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Zhi Yang & Jisong Yao & Leimeng Xu & Wenxuan Fan & Jizhong Song, 2024. "Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Burak Guzelturk & Benjamin T. Diroll & James P. Cassidy & Dulanjan Harankahage & Muchuan Hua & Xiao-Min Lin & Vasudevan Iyer & Richard D. Schaller & Benjamin J. Lawrie & Mikhail Zamkov, 2024. "Bright and durable scintillation from colloidal quantum shells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. E. Kirstein & N. E. Kopteva & D. R. Yakovlev & E. A. Zhukov & E. V. Kolobkova & M. S. Kuznetsova & V. V. Belykh & I. A. Yugova & M. M. Glazov & M. Bayer & A. Greilich, 2023. "Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Lei Lei & Minghao Yi & Yubin Wang & Youjie Hua & Junjie Zhang & Paras N. Prasad & Shiqing Xu, 2024. "Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Xiaoqian Ma & Nuo Lin & Qing Yang & Peifei Liu & Haizhen Ding & Mengjiao Xu & Fangfang Ren & Zhiyang Shen & Ke Hu & Shanshan Meng & Hongmin Chen, 2024. "Biodegradable copper-iodide clusters modulate mitochondrial function and suppress tumor growth under ultralow-dose X-ray irradiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51482-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.