IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v550y2017i7674d10.1038_nature24032.html
   My bibliography  Save this article

Printable organometallic perovskite enables large-area, low-dose X-ray imaging

Author

Listed:
  • Yong Churl Kim

    (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Materials Research Complex, Youngtong)

  • Kwang Hee Kim

    (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Materials Research Complex, Youngtong)

  • Dae-Yong Son

    (Sungkyunkwan University)

  • Dong-Nyuk Jeong

    (Sungkyunkwan University)

  • Ja-Young Seo

    (Sungkyunkwan University)

  • Yeong Suk Choi

    (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Materials Research Complex, Youngtong)

  • In Taek Han

    (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Materials Research Complex, Youngtong)

  • Sang Yoon Lee

    (Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Materials Research Complex, Youngtong)

  • Nam-Gyu Park

    (Sungkyunkwan University)

Abstract

Highly sensitive all-solution-based detectors based on printable polycrystalline organometallic perovskite thick films enable X-ray imaging at low radiation doses and over large areas.

Suggested Citation

  • Yong Churl Kim & Kwang Hee Kim & Dae-Yong Son & Dong-Nyuk Jeong & Ja-Young Seo & Yeong Suk Choi & In Taek Han & Sang Yoon Lee & Nam-Gyu Park, 2017. "Printable organometallic perovskite enables large-area, low-dose X-ray imaging," Nature, Nature, vol. 550(7674), pages 87-91, October.
  • Handle: RePEc:nat:nature:v:550:y:2017:i:7674:d:10.1038_nature24032
    DOI: 10.1038/nature24032
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24032
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaokang Yao & Yuxin Li & Huifang Shi & Ze Yu & Beishen Wu & Zixing Zhou & Chifeng Zhou & Xifang Zheng & Mengting Tang & Xiao Wang & Huili Ma & Zhengong Meng & Wei Huang & Zhongfu An, 2024. "Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yangshuang Bian & Kai Liu & Yang Ran & Yi Li & Yuanhong Gao & Zhiyuan Zhao & Mingchao Shao & Yanwei Liu & Junhua Kuang & Zhiheng Zhu & Mingcong Qin & Zhichao Pan & Mingliang Zhu & Chenyu Wang & Hu Che, 2022. "Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yanliang Liu & Chaosong Gao & Dong Li & Xin Zhang & Jiongtao Zhu & Meng Wu & Wenjun Liu & Tongyu Shi & Xingchen He & Jiahong Wang & Hao Huang & Zonghai Sheng & Dong Liang & Xue-Feng Yu & Hairong Zheng, 2024. "Dynamic X-ray imaging with screen-printed perovskite CMOS array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Zihao Song & Xinyuan Du & Xin He & Hanqi Wang & Zhiqiang Liu & Haodi Wu & Hongde Luo & Libo Jin & Ling Xu & Zhiping Zheng & Guangda Niu & Jiang Tang, 2023. "Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:550:y:2017:i:7674:d:10.1038_nature24032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.