IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52925-y.html
   My bibliography  Save this article

Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells

Author

Listed:
  • Zihan Qu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Liaoning University)

  • Fei Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Le Mei

    (City University of Hong Kong
    Soochow University
    Soochow University)

  • Xian-Kai Chen

    (Soochow University
    Soochow University)

  • Haitao Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinbo Chu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yingguo Yang

    (Chinese Academy of Sciences
    Fudan University)

  • Qi Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xingwang Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jingbi You

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Surface passivation has been developed as an effective strategy to reduce trap-state density and suppress non-radiation recombination process in perovskite solar cells. However, passivation agents usually own poor conductivity and hold negative impact on the charge carrier transport in device. Here, we report a binary and synergistical post-treatment method by blending 4-tert-butyl-benzylammonium iodide with phenylpropylammonium iodide and spin-coating on perovskite surface to form passivation layer. The binary and synergistical post-treated films show enhanced crystallinity and improved molecular packing as well as better energy band alignment, benefiting for the hole extraction and transfer. Moreover, the surface defects are further passivated compared with unary passivation. Based on the strategy, a record-certified quasi-steady power conversion efficiency of 26.0% perovskite solar cells is achieved. The devices could maintain 81% of initial efficiency after 450 h maximum power point tracking.

Suggested Citation

  • Zihan Qu & Yang Zhao & Fei Ma & Le Mei & Xian-Kai Chen & Haitao Zhou & Xinbo Chu & Yingguo Yang & Qi Jiang & Xingwang Zhang & Jingbi You, 2024. "Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52925-y
    DOI: 10.1038/s41467-024-52925-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52925-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52925-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Jiang & Liuqi Zhang & Haolin Wang & Xiaolei Yang & Junhua Meng & Heng Liu & Zhigang Yin & Jinliang Wu & Xingwang Zhang & Jingbi You, 2017. "Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells," Nature Energy, Nature, vol. 2(1), pages 1-7, January.
    2. Xiaopeng Zheng & Bo Chen & Jun Dai & Yanjun Fang & Yang Bai & Yuze Lin & Haotong Wei & Xiao Cheng Zeng & Jinsong Huang, 2017. "Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
    3. Yujie Luo & Kaikai Liu & Liu Yang & Wenjing Feng & Lingfang Zheng & Lina Shen & Yongbin Jin & Zheng Fang & Peiquan Song & Wanjia Tian & Peng Xu & Yuqing Li & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2023. "Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
    5. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    6. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    7. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    8. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    9. Dongqin Bi & Chenyi Yi & Jingshan Luo & Jean-David Décoppet & Fei Zhang & Shaik Mohammed Zakeeruddin & Xiong Li & Anders Hagfeldt & Michael Grätzel, 2016. "Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%," Nature Energy, Nature, vol. 1(10), pages 1-5, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Hobeom Kim & So-Min Yoo & Bin Ding & Hiroyuki Kanda & Naoyuki Shibayama & Maria A. Syzgantseva & Farzaneh Fadaei Tirani & Pascal Schouwink & Hyung Joong Yun & Byoungchul Son & Yong Ding & Beom-Soo Kim, 2024. "Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    7. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    8. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    11. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    12. Francisca Werlinger & Camilo Segura & Javier Martínez & Igor Osorio-Roman & Danilo Jara & Seog Joon Yoon & Andrés Fabián Gualdrón-Reyes, 2023. "Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective," Energies, MDPI, vol. 16(16), pages 1-35, August.
    13. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Yu Pu & Haijun Su & Congcong Liu & Min Guo & Lin Liu & Hengzhi Fu, 2023. "A Review on Buried Interface of Perovskite Solar Cells," Energies, MDPI, vol. 16(13), pages 1-30, June.
    17. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    19. Md Aslam Uddin & Prem Jyoti Singh Rana & Zhenyi Ni & Guang Yang & Mingze Li & Mengru Wang & Hangyu Gu & Hengkai Zhang & Benjia Dak Dou & Jinsong Huang, 2024. "Iodide manipulation using zinc additives for efficient perovskite solar minimodules," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Chun-Yang Chen & Fang-Hui Zhang & Jin Huang & Tao Xue & Xiao Wang & Chao-Fan Zheng & Hao Wang & Chun-Liang Jia, 2023. "Polymer Poly (Ethylene Oxide) Additive for High-Stability All-Inorganic CsPbI 3−x Br x Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-12, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52925-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.