IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i5d10.1038_s41560-023-01249-0.html
   My bibliography  Save this article

Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells

Author

Listed:
  • Shuai You

    (Huazhong University of Science and Technology
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Felix T. Eickemeyer

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Jing Gao

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Jun-Ho Yum

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Xin Zheng

    (Huazhong University of Science and Technology)

  • Dan Ren

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Meng Xia

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Rui Guo

    (Huazhong University of Science and Technology)

  • Yaoguang Rong

    (Huazhong University of Science and Technology)

  • Shaik M. Zakeeruddin

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Kevin Sivula

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Jiang Tang

    (Huazhong University of Science and Technology)

  • Zhongjin Shen

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Xiong Li

    (Huazhong University of Science and Technology)

  • Michael Grätzel

    (École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Perovskite solar cells have reached a power conversion efficiency over 25%, and the engineering of the interface between the perovskite and hole transport layer (HTL) has been crucial to achieve high performance. Here we design a bifunctional molecule CBz-PAI with carbazole-triphenylamine and phenylammonium iodide units to passivate defects at the perovskite/HTL interface. Owing to a favourable energy level alignment with the perovskite, the CBz-PAI acts as a hole shuttle between the perovskite layer and the HTL. This minimizes the difference between the quasi-Fermi level splitting of the perovskite, or ‘internal’ Voc, and the external device Voc, thus reducing voltage losses. As a result, solar cells incorporating CBz-PAI reach a stabilized power conversion efficiency of 24.7% and maintain 92.3% of the initial efficiency after 1,000 h under damp heat test (85 °C and 85% relative humidity) and 94.6% after 1,100 h under maximum power point-tracking conditions.

Suggested Citation

  • Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:5:d:10.1038_s41560-023-01249-0
    DOI: 10.1038/s41560-023-01249-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01249-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01249-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaopeng Zheng & Bo Chen & Jun Dai & Yanjun Fang & Yang Bai & Yuze Lin & Haotong Wei & Xiao Cheng Zeng & Jinsong Huang, 2017. "Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
    2. Dongqin Bi & Xiong Li & Jovana V. Milić & Dominik J. Kubicki & Norman Pellet & Jingshan Luo & Thomas LaGrange & Pierre Mettraux & Lyndon Emsley & Shaik M. Zakeeruddin & Michael Grätzel, 2018. "Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Chao Liang & Hao Gu & Yingdong Xia & Zhuo Wang & Xiaotao Liu & Junmin Xia & Shouwei Zuo & Yue Hu & Xingyu Gao & Wei Hui & Lingfeng Chao & Tingting Niu & Min Fang & Hui Lu & Han Dong & Hui Yu & Shi Che, 2021. "Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films," Nature Energy, Nature, vol. 6(1), pages 38-45, January.
    4. Enzheng Shi & Biao Yuan & Stephen B. Shiring & Yao Gao & Akriti & Yunfan Guo & Cong Su & Minliang Lai & Peidong Yang & Jing Kong & Brett M. Savoie & Yi Yu & Letian Dou, 2020. "Two-dimensional halide perovskite lateral epitaxial heterostructures," Nature, Nature, vol. 580(7805), pages 614-620, April.
    5. Yeoun-Woo Jang & Seungmin Lee & Kyung Mun Yeom & Kiwan Jeong & Kwang Choi & Mansoo Choi & Jun Hong Noh, 2021. "Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth," Nature Energy, Nature, vol. 6(1), pages 63-71, January.
    6. Jason J. Yoo & Gabkyung Seo & Matthew R. Chua & Tae Gwan Park & Yongli Lu & Fabian Rotermund & Young-Ki Kim & Chan Su Moon & Nam Joong Jeon & Juan-Pablo Correa-Baena & Vladimir Bulović & Seong Sik Shi, 2021. "Efficient perovskite solar cells via improved carrier management," Nature, Nature, vol. 590(7847), pages 587-593, February.
    7. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    8. Yongzhen Wu & Xudong Yang & Wei Chen & Youfeng Yue & Molang Cai & Fengxian Xie & Enbing Bi & Ashraful Islam & Liyuan Han, 2016. "Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering," Nature Energy, Nature, vol. 1(11), pages 1-7, November.
    9. Jun Peng & Felipe Kremer & Daniel Walter & Yiliang Wu & Yi Ji & Jin Xiang & Wenzhu Liu & The Duong & Heping Shen & Teng Lu & Frank Brink & Dingyong Zhong & Li Li & Olivier Lee Cheong Lem & Yun Liu & K, 2022. "Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent," Nature, Nature, vol. 601(7894), pages 573-578, January.
    10. Eui Hyuk Jung & Nam Joong Jeon & Eun Young Park & Chan Su Moon & Tae Joo Shin & Tae-Youl Yang & Jun Hong Noh & Jangwon Seo, 2019. "Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)," Nature, Nature, vol. 567(7749), pages 511-515, March.
    11. Jinhui Tong & Qi Jiang & Andrew J. Ferguson & Axel F. Palmstrom & Xiaoming Wang & Ji Hao & Sean P. Dunfield & Amy E. Louks & Steven P. Harvey & Chongwen Li & Haipeng Lu & Ryan M. France & Samuel A. Jo, 2022. "Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability," Nature Energy, Nature, vol. 7(7), pages 642-651, July.
    12. Hong Zhang & Felix Thomas Eickemeyer & Zhiwen Zhou & Marko Mladenović & Farzaneh Jahanbakhshi & Lena Merten & Alexander Hinderhofer & Michael A. Hope & Olivier Ouellette & Aditya Mishra & Paramvir Ahl, 2021. "Multimodal host–guest complexation for efficient and stable perovskite photovoltaics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Jaeki Jeong & Minjin Kim & Jongdeuk Seo & Haizhou Lu & Paramvir Ahlawat & Aditya Mishra & Yingguo Yang & Michael A. Hope & Felix T. Eickemeyer & Maengsuk Kim & Yung Jin Yoon & In Woo Choi & Barbara Pr, 2021. "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, Nature, vol. 592(7854), pages 381-385, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Zhao & Ju Liu & Gang Lu & Jinliang Zhang & Liyang Wan & Shan Peng & Chao Li & Yanlei Wang & Mingzhan Wang & Hongyan He & John H. Xin & Yulong Ding & Shuang Zheng, 2024. "Diurnal humidity cycle driven selective ion transport across clustered polycation membrane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Zihan Qu & Yang Zhao & Fei Ma & Le Mei & Xian-Kai Chen & Haitao Zhou & Xinbo Chu & Yingguo Yang & Qi Jiang & Xingwang Zhang & Jingbi You, 2024. "Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    2. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Dongdong Xu & Zhiming Gong & Yue Jiang & Yancong Feng & Zhen Wang & Xingsen Gao & Xubing Lu & Guofu Zhou & Jun-Ming Liu & Jinwei Gao, 2022. "Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    8. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Tinghuan Yang & Lili Gao & Jing Lu & Chuang Ma & Yachao Du & Peijun Wang & Zicheng Ding & Shiqiang Wang & Peng Xu & Dongle Liu & Haojin Li & Xiaoming Chang & Junjie Fang & Wenming Tian & Yingguo Yang , 2023. "One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Hobeom Kim & So-Min Yoo & Bin Ding & Hiroyuki Kanda & Naoyuki Shibayama & Maria A. Syzgantseva & Farzaneh Fadaei Tirani & Pascal Schouwink & Hyung Joong Yun & Byoungchul Son & Yong Ding & Beom-Soo Kim, 2024. "Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Zaheen Uddin & Junhui Ran & Elias Stathatos & Bin Yang, 2023. "Improving Thermal Stability of Perovskite Solar Cells by Thermoplastic Additive Engineering," Energies, MDPI, vol. 16(9), pages 1-12, April.
    17. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    18. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yu Pu & Haijun Su & Congcong Liu & Min Guo & Lin Liu & Hengzhi Fu, 2023. "A Review on Buried Interface of Perovskite Solar Cells," Energies, MDPI, vol. 16(13), pages 1-30, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:5:d:10.1038_s41560-023-01249-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.