IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2471-2489.html
   My bibliography  Save this article

Perovskite solar cells: Materials, configurations and stability

Author

Listed:
  • Mesquita, Isabel
  • Andrade, Luísa
  • Mendes, Adélio

Abstract

Perovskite solar cells (PSC) have recently emerged as a strong contender for the next generation of photovoltaic technologies, having received the attention of the photovoltaic community, both scientists and industry. In few years, power conversion efficiency of PSCs reached already 22%. A broad range of architectures and fabrication methods have been proposed, as well as several perovskite compositions and charge selective layers, suggesting that the performance of these devices is still far from being fully optimized. PSCs still exhibiting stability problems and the most efficient absorbers incorporate lead (ca. 13mgm-2). Moreover, PSCs are sensitive to high temperatures, UV-light, moisture and oxygen: factors that are hindering their commercialization.

Suggested Citation

  • Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2471-2489
    DOI: 10.1016/j.rser.2017.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117312613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    3. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    4. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Chun-Sheng Jiang & Mengjin Yang & Yuanyuan Zhou & Bobby To & Sanjini U. Nanayakkara & Joseph M. Luther & Weilie Zhou & Joseph J. Berry & Jao van de Lagemaat & Nitin P. Padture & Kai Zhu & Mowafak M. A, 2015. "Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    6. U. Bach & D. Lupo & P. Comte & J. E. Moser & F. Weissörtel & J. Salbeck & H. Spreitzer & M. Grätzel, 1998. "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, Nature, vol. 395(6702), pages 583-585, October.
    7. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.
    8. Michael Saliba & Simonetta Orlandi & Taisuke Matsui & Sadig Aghazada & Marco Cavazzini & Juan-Pablo Correa-Baena & Peng Gao & Rosario Scopelliti & Edoardo Mosconi & Klaus-Hermann Dahmen & Filippo De A, 2016. "A molecularly engineered hole-transporting material for efficient perovskite solar cells," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    9. Yuchuan Shao & Zhengguo Xiao & Cheng Bi & Yongbo Yuan & Jinsong Huang, 2014. "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    10. Pablo Docampo & James M. Ball & Mariam Darwich & Giles E. Eperon & Henry J. Snaith, 2013. "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    11. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    12. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    13. Nam-Gyu Park & Michael Grätzel & Tsutomu Miyasaka & Kai Zhu & Keith Emery, 2016. "Towards stable and commercially available perovskite solar cells," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    14. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    15. Dongqin Bi & Chenyi Yi & Jingshan Luo & Jean-David Décoppet & Fei Zhang & Shaik Mohammed Zakeeruddin & Xiong Li & Anders Hagfeldt & Michael Grätzel, 2016. "Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%," Nature Energy, Nature, vol. 1(10), pages 1-5, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    2. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Diego Magaldi & Maria Ulfa & Sébastien Péralta & Fabrice Goubard & Thierry Pauporté & Thanh-Tuân Bui, 2020. "Carbazole Electroactive Amorphous Molecular Material: Molecular Design, Synthesis, Characterization and Application in Perovskite Solar Cells," Energies, MDPI, vol. 13(11), pages 1-9, June.
    4. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    2. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    3. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    4. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    5. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Ibn-Mohammed, T. & Koh, S.C.L. & Reaney, I.M. & Acquaye, A. & Schileo, G. & Mustapha, K.B. & Greenough, R., 2017. "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1321-1344.
    7. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    8. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    9. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    10. Joseph Asare & Dahiru M. Sanni & Benjamin Agyei-Tuffour & Ernest Agede & Oluwaseun Kehinde Oyewole & Aditya S. Yerramilli & Nutifafa Y. Doumon, 2021. "A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells," Energies, MDPI, vol. 14(7), pages 1-13, April.
    11. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    12. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Litvin, Aleksandr P. & Zhang, Xiaoyu & Berwick, Kevin & Fedorov, Anatoly V. & Zheng, Weitao & Baranov, Alexander V., 2020. "Carbon-based interlayers in perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.
    15. Taewan Kim & Jongchul Lim & Seulki Song, 2020. "Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells," Energies, MDPI, vol. 13(21), pages 1-16, October.
    16. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    18. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    19. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2471-2489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.