IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i7d10.1038_nenergy.2017.102.html
   My bibliography  Save this article

Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations

Author

Listed:
  • Xiaopeng Zheng

    (University of Nebraska-Lincoln)

  • Bo Chen

    (University of Nebraska-Lincoln)

  • Jun Dai

    (University of Nebraska-Lincoln)

  • Yanjun Fang

    (University of Nebraska-Lincoln)

  • Yang Bai

    (University of Nebraska-Lincoln)

  • Yuze Lin

    (University of Nebraska-Lincoln)

  • Haotong Wei

    (University of Nebraska-Lincoln)

  • Xiao Cheng Zeng

    (University of Nebraska-Lincoln)

  • Jinsong Huang

    (University of Nebraska-Lincoln
    University of North Carolina)

Abstract

The ionic defects at the surfaces and grain boundaries of organic–inorganic halide perovskite films are detrimental to both the efficiency and stability of perovskite solar cells. Here, we show that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative- and positive-charged components. The efficient defect passivation reduces the charge trap density and elongates the carrier recombination lifetime, which is supported by density-function-theory calculation. The defect passivation reduces the open-circuit-voltage deficit of the p–i–n-structured device to 0.39 V, and boosts the efficiency to a certified value of 20.59 ± 0.45%. Moreover, the defect healing also significantly enhances the stability of films in ambient conditions. Our findings provide an avenue for defect passivation to further improve both the efficiency and stability of solar cells.

Suggested Citation

  • Xiaopeng Zheng & Bo Chen & Jun Dai & Yanjun Fang & Yang Bai & Yuze Lin & Haotong Wei & Xiao Cheng Zeng & Jinsong Huang, 2017. "Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations," Nature Energy, Nature, vol. 2(7), pages 1-9, July.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:7:d:10.1038_nenergy.2017.102
    DOI: 10.1038/nenergy.2017.102
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy2017102
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2017.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    2. Stefania Cacovich & Guillaume Vidon & Matteo Degani & Marie Legrand & Laxman Gouda & Jean-Baptiste Puel & Yana Vaynzof & Jean-François Guillemoles & Daniel Ory & Giulia Grancini, 2022. "Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Md Aslam Uddin & Prem Jyoti Singh Rana & Zhenyi Ni & Guang Yang & Mingze Li & Mengru Wang & Hangyu Gu & Hengkai Zhang & Benjia Dak Dou & Jinsong Huang, 2024. "Iodide manipulation using zinc additives for efficient perovskite solar minimodules," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Guus J. W. Aalbers & Tom P. A. Pol & Kunal Datta & Willemijn H. M. Remmerswaal & Martijn M. Wienk & René A. J. Janssen, 2024. "Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Tinghuan Yang & Lili Gao & Jing Lu & Chuang Ma & Yachao Du & Peijun Wang & Zicheng Ding & Shiqiang Wang & Peng Xu & Dongle Liu & Haojin Li & Xiaoming Chang & Junjie Fang & Wenming Tian & Yingguo Yang , 2023. "One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Marwa. S. Salem & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Adwan Alanazi & Mohammad T. Alshammari & Christian Gontand, 2021. "Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator," Energies, MDPI, vol. 14(18), pages 1-22, September.
    11. M. Mottakin & K. Sobayel & Dilip Sarkar & Hend Alkhammash & Sami Alharthi & Kuaanan Techato & Md. Shahiduzzaman & Nowshad Amin & Kamaruzzaman Sopian & Md. Akhtaruzzaman, 2021. "Design and Modelling of Eco-Friendly CH 3 NH 3 SnI 3 -Based Perovskite Solar Cells with Suitable Transport Layers," Energies, MDPI, vol. 14(21), pages 1-16, November.
    12. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:7:d:10.1038_nenergy.2017.102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.