IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v616y2023i7958d10.1038_s41586-023-05825-y.html
   My bibliography  Save this article

Controlled growth of perovskite layers with volatile alkylammonium chlorides

Author

Listed:
  • Jaewang Park

    (Ulsan National Institute of Science and Technology (UNIST))

  • Jongbeom Kim

    (Ulsan National Institute of Science and Technology (UNIST))

  • Hyun-Sung Yun

    (Ulsan National Institute of Science and Technology (UNIST))

  • Min Jae Paik

    (Ulsan National Institute of Science and Technology (UNIST))

  • Eunseo Noh

    (Ulsan National Institute of Science and Technology (UNIST))

  • Hyun Jung Mun

    (Chonnam National University)

  • Min Gyu Kim

    (Pohang University of Science and Technology (POSTECH))

  • Tae Joo Shin

    (Ulsan National Institute of Science and Technology (UNIST))

  • Sang Il Seok

    (Ulsan National Institute of Science and Technology (UNIST))

Abstract

Controlling the crystallinity and surface morphology of perovskite layers by methods such as solvent engineering1,2 and methylammonium chloride addition3–7 is an effective strategy for achieving high-efficiency perovskite solar cells. In particular, it is essential to deposit α-formamidinium lead iodide (FAPbI3) perovskite thin films with few defects due to their excellent crystallinity and large grain size. Here we report the controlled crystallization of perovskite thin films with the combination of alkylammonium chlorides (RACl) added to FAPbI3. The δ-phase to α-phase transition of FAPbI3 and the crystallization process and surface morphology of the perovskite thin films coated with RACl under various conditions were investigated through in situ grazing-incidence wide-angle X-ray diffraction and scanning electron microscopy. RACl added to the precursor solution was believed to be easily volatilized during coating and annealing owing to dissociation into RA0 and HCl with deprotonation of RA+ induced by RA⋯H+-Cl− binding to PbI2 in FAPbI3. Thus, the type and amount of RACl determined the δ-phase to α-phase transition rate, crystallinity, preferred orientation and surface morphology of the final α-FAPbI3. The resulting perovskite thin layers facilitated the fabrication of perovskite solar cells with a power-conversion efficiency of 26.08% (certified 25.73%) under standard illumination.

Suggested Citation

  • Jaewang Park & Jongbeom Kim & Hyun-Sung Yun & Min Jae Paik & Eunseo Noh & Hyun Jung Mun & Min Gyu Kim & Tae Joo Shin & Sang Il Seok, 2023. "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, Nature, vol. 616(7958), pages 724-730, April.
  • Handle: RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05825-y
    DOI: 10.1038/s41586-023-05825-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05825-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05825-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisca Werlinger & Camilo Segura & Javier Martínez & Igor Osorio-Roman & Danilo Jara & Seog Joon Yoon & Andrés Fabián Gualdrón-Reyes, 2023. "Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective," Energies, MDPI, vol. 16(16), pages 1-35, August.
    2. Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    4. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yongjin Gan & Guixin Qiu & Chenqing Yan & Zhaoxiang Zeng & Binyi Qin & Xueguang Bi & Yucheng Liu, 2023. "Numerical Analysis on the Effect of the Conduction Band Offset in Dion–Jacobson Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-13, December.
    8. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Tian Chen & Jiangsheng Xie & Bin Wen & Qixin Yin & Ruohao Lin & Shengcai Zhu & Pingqi Gao, 2023. "Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Shuchen Tan & Chongwen Li & Cheng Peng & Wenjian Yan & Hongkai Bu & Haokun Jiang & Fang Yue & Linbao Zhang & Hongtao Gao & Zhongmin Zhou, 2024. "Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Chun-Yang Chen & Fang-Hui Zhang & Jin Huang & Tao Xue & Xiao Wang & Chao-Fan Zheng & Hao Wang & Chun-Liang Jia, 2023. "Polymer Poly (Ethylene Oxide) Additive for High-Stability All-Inorganic CsPbI 3−x Br x Perovskite Solar Cells," Energies, MDPI, vol. 16(23), pages 1-12, November.
    16. Bin Wen & Tian Chen & Qixin Yin & Jiangsheng Xie & Chaohua Dai & Ruohao Lin & Sicen Zhou & Jiancan Yu & Pingqi Gao, 2024. "Robust chelated lead octahedron surface for efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Zihan Qu & Yang Zhao & Fei Ma & Le Mei & Xian-Kai Chen & Haitao Zhou & Xinbo Chu & Yingguo Yang & Qi Jiang & Xingwang Zhang & Jingbi You, 2024. "Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05825-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.