IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33752-5.html
   My bibliography  Save this article

Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin

Author

Listed:
  • Dejian Yu

    (Shenzhen University
    University of Macau)

  • Fei Cao

    (Shenzhen University
    University of Macau)

  • Jinfeng Liao

    (University of Macau)

  • Bingzhe Wang

    (University of Macau)

  • Chenliang Su

    (Shenzhen University)

  • Guichuan Xing

    (University of Macau)

Abstract

Mixed-dimensional 2D/3D halide perovskite solar cells promise high stability but practically deliver poor power conversion efficiency, and the 2D HP component has been held as the culprit because its intrinsic downsides (ill charge conductivity, wider bandgap, and strong exciton binding) were intuitively deemed to hinder carrier transport. Herein, we show that the 2D HP fragments, in fact, allow free migration of carriers in darkness but only block the carrier transport under illumination. While surely limiting the photovoltaic performance, such photoinduced carrier blocking effect is unexplainable by the traditional understanding above but is found to stem from the trap-filling-enhanced built-in potential of the 2D/3D HP interface. By parsing the depth-profile nanoscopic phase arrangement of the mixed-dimensional 2D/3D HP film for solar cells and revealing a photoinduced potential barrier up to several hundred meV, we further elucidate how the photoinduced carrier blocking mechanism jeopardizes the short-circuit current and fill factor.

Suggested Citation

  • Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33752-5
    DOI: 10.1038/s41467-022-33752-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33752-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33752-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    2. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Yan Shao & Wei Gao & Hejin Yan & Runlai Li & Ibrahim Abdelwahab & Xiao Chi & Lukas Rogée & Lyuchao Zhuang & Wei Fu & Shu Ping Lau & Siu Fung Yu & Yongqing Cai & Kian Ping Loh & Kai Leng, 2022. "Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xuejian Ma & Fei Zhang & Zhaodong Chu & Ji Hao & Xihan Chen & Jiamin Quan & Zhiyuan Huang & Xiaoming Wang & Xiaoqin Li & Yanfa Yan & Kai Zhu & Keji Lai, 2021. "Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    6. Stuart Macpherson & Tiarnan A. S. Doherty & Andrew J. Winchester & Sofiia Kosar & Duncan N. Johnstone & Yu-Hsien Chiang & Krzysztof Galkowski & Miguel Anaya & Kyle Frohna & Affan N. Iqbal & Satyawan N, 2022. "Local nanoscale phase impurities are degradation sites in halide perovskites," Nature, Nature, vol. 607(7918), pages 294-300, July.
    7. Yun Lin & Yanjun Fang & Jingjing Zhao & Yuchuan Shao & Samuel J. Stuard & Masrur Morshed Nahid & Harald Ade & Qi Wang & Jeffrey E. Shield & Ninghao Zhou & Andrew M. Moran & Jinsong Huang, 2019. "Unveiling the operation mechanism of layered perovskite solar cells," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Jingfeng Song & Yuanyuan Zhou & Nitin P. Padture & Bryan D. Huey, 2020. "Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Zhiping Wang & Qianqian Lin & Francis P. Chmiel & Nobuya Sakai & Laura M. Herz & Henry J. Snaith, 2017. "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, Nature, vol. 2(9), pages 1-10, September.
    10. Jaeki Jeong & Minjin Kim & Jongdeuk Seo & Haizhou Lu & Paramvir Ahlawat & Aditya Mishra & Yingguo Yang & Michael A. Hope & Felix T. Eickemeyer & Maengsuk Kim & Yung Jin Yoon & In Woo Choi & Barbara Pr, 2021. "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, Nature, vol. 592(7854), pages 381-385, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    4. Weichuan Zhang & Ziyuan Liu & Lizhi Zhang & Hui Wang & Chuanxiu Jiang & Xianxin Wu & Chuanyun Li & Shengli Yue & Rongsheng Yang & Hong Zhang & Jianqi Zhang & Xinfeng Liu & Yuan Zhang & Huiqiong Zhou, 2024. "Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    6. Cheng Liu & Yi Yang & Kasparas Rakstys & Arup Mahata & Marius Franckevicius & Edoardo Mosconi & Raminta Skackauskaite & Bin Ding & Keith G. Brooks & Onovbaramwen Jennifer Usiobo & Jean-Nicolas Audinot, 2021. "Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    9. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    10. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Dongdong Xu & Zhiming Gong & Yue Jiang & Yancong Feng & Zhen Wang & Xingsen Gao & Xubing Lu & Guofu Zhou & Jun-Ming Liu & Jinwei Gao, 2022. "Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    15. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Yujie Luo & Kaikai Liu & Liu Yang & Wenjing Feng & Lingfang Zheng & Lina Shen & Yongbin Jin & Zheng Fang & Peiquan Song & Wanjia Tian & Peng Xu & Yuqing Li & Chengbo Tian & Liqiang Xie & Zhanhua Wei, 2023. "Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Zihan Qu & Yang Zhao & Fei Ma & Le Mei & Xian-Kai Chen & Haitao Zhou & Xinbo Chu & Yingguo Yang & Qi Jiang & Xingwang Zhang & Jingbi You, 2024. "Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Hobeom Kim & So-Min Yoo & Bin Ding & Hiroyuki Kanda & Naoyuki Shibayama & Maria A. Syzgantseva & Farzaneh Fadaei Tirani & Pascal Schouwink & Hyung Joong Yun & Byoungchul Son & Yong Ding & Beom-Soo Kim, 2024. "Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Shaochuan Hou & Siheng Wu & Xiaoyan Li & Jiahao Yan & Jie Xing & Hao Liu & Huiying Hao & Jingjing Dong & Haochong Huang, 2022. "Efficient CsPbBr 3 Perovskite Solar Cells with Storage Stability > 340 Days," Energies, MDPI, vol. 15(20), pages 1-9, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33752-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.