IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51218-8.html
   My bibliography  Save this article

Polyphenol-stabilized coacervates for enzyme-triggered drug delivery

Author

Listed:
  • Wonjun Yim

    (University of California San Diego)

  • Zhicheng Jin

    (University of California San Diego)

  • Yu-Ci Chang

    (University of California San Diego)

  • Carlos Brambila

    (University of California San Diego)

  • Matthew N. Creyer

    (University of California San Diego)

  • Chuxuan Ling

    (University of California San Diego)

  • Tengyu He

    (University of California San Diego)

  • Yi Li

    (University of California San Diego)

  • Maurice Retout

    (University of California San Diego)

  • William F. Penny

    (University of California San Diego)

  • Jiajing Zhou

    (University of California San Diego)

  • Jesse V. Jokerst

    (University of California San Diego
    University of California San Diego
    University of California San Diego)

Abstract

Stability issues in membrane-free coacervates have been addressed with coating strategies, but these approaches often compromise the permeability of the coacervate. Here we report a facile approach to maintain both stability and permeability using tannic acid and then demonstrate the value of this approach in enzyme-triggered drug release. First, we develop size-tunable coacervates via self-assembly of heparin glycosaminoglycan with tyrosine and arginine-based peptides. A thrombin-recognition site within the peptide building block results in heparin release upon thrombin proteolysis. Notably, polyphenols are integrated within the nano-coacervates to improve stability in biofluids. Phenolic crosslinking at the liquid-liquid interface enables nano-coacervates to maintain exceptional structural integrity across various environments. We discover a pivotal polyphenol threshold for preserving enzymatic activity alongside enhanced stability. The disassembly rate of the nano-coacervates increases as a function of thrombin activity, thus preventing a coagulation cascade. This polyphenol-based approach not only improves stability but also opens the way for applications in biomedicine, protease sensing, and bio-responsive drug delivery.

Suggested Citation

  • Wonjun Yim & Zhicheng Jin & Yu-Ci Chang & Carlos Brambila & Matthew N. Creyer & Chuxuan Ling & Tengyu He & Yi Li & Maurice Retout & William F. Penny & Jiajing Zhou & Jesse V. Jokerst, 2024. "Polyphenol-stabilized coacervates for enzyme-triggered drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51218-8
    DOI: 10.1038/s41467-024-51218-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51218-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51218-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiajing Zhou & Zhixing Lin & Matthew Penna & Shuaijun Pan & Yi Ju & Shiyao Li & Yiyuan Han & Jingqu Chen & Gan Lin & Joseph J. Richardson & Irene Yarovsky & Frank Caruso, 2020. "Particle engineering enabled by polyphenol-mediated supramolecular networks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Manfred F. Maitz & Uwe Freudenberg & Mikhail V. Tsurkan & Marion Fischer & Theresa Beyrich & Carsten Werner, 2013. "Bio-responsive polymer hydrogels homeostatically regulate blood coagulation," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    3. Nigel Mackman, 2008. "Triggers, targets and treatments for thrombosis," Nature, Nature, vol. 451(7181), pages 914-918, February.
    4. Yiran Li & Jing Cheng & Peyman Delparastan & Haoqi Wang & Severin J. Sigg & Kelsey G. DeFrates & Yi Cao & Phillip B. Messersmith, 2020. "Molecular design principles of Lysine-DOPA wet adhesion," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Qi Guo & Guijin Zou & Xuliang Qian & Shujun Chen & Huajian Gao & Jing Yu, 2022. "Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Karina K. Nakashima & Merlijn H. I. Haren & Alain A. M. André & Irina Robu & Evan Spruijt, 2021. "Active coacervate droplets are protocells that grow and resist Ostwald ripening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Ranajay Saha & Samuel Verbanic & Irene A. Chen, 2018. "Lipid vesicles chaperone an encapsulated RNA aptamer," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    8. Pengchao Zhao & Xianfeng Xia & Xiayi Xu & Kevin Kai Chung Leung & Aliza Rai & Yingrui Deng & Boguang Yang & Huasheng Lai & Xin Peng & Peng Shi & Honglu Zhang & Philip Wai Yan Chiu & Liming Bian, 2021. "Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone M. Poprawa & Michele Stasi & Brigitte A. K. Kriebisch & Monika Wenisch & Judit Sastre & Job Boekhoven, 2024. "Active droplets through enzyme-free, dynamic phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Hongyuan Zhang & Zhiqiang Zhao & Shengnan Sun & Sen Zhang & Yuequan Wang & Xuanbo Zhang & Jin Sun & Zhonggui He & Shenwu Zhang & Cong Luo, 2023. "Molecularly self‐fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yuhe Shen & Rongxin Su & Dongzhao Hao & Xiaojian Xu & Meital Reches & Jiwei Min & Heng Chang & Tao Yu & Qing Li & Xiaoyu Zhang & Yuefei Wang & Yuefei Wang & Wei Qi, 2023. "Enzymatic polymerization of enantiomeric L−3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Hanjin Seo & Hyomin Lee, 2022. "Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Michel W J Smeets & Ruben Bierings & Henriet Meems & Frederik P J Mul & Dirk Geerts & Alexander P J Vlaar & Jan Voorberg & Peter L Hordijk, 2017. "Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-19, March.
    14. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Chanel C. La & Stephanie A. Smith & Sreeparna Vappala & Reheman Adili & Catherine E. Luke & Srinivas Abbina & Haiming D. Luo & Irina Chafeeva & Matthew Drayton & Louise A. Creagh & Maria Guadalupe Jar, 2023. "Smart thrombosis inhibitors without bleeding side effects via charge tunable ligand design," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Junqing Xie & Yuliang Feng & Danielle Newby & Bang Zheng & Qi Feng & Albert Prats-Uribe & Chunxiao Li & Nicholas J. Wareham & R. Paredes & Daniel Prieto-Alhambra, 2023. "Genetic risk, adherence to healthy lifestyle and acute cardiovascular and thromboembolic complications following SARS-COV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Donghui Zhang & Jingjing Liu & Qi Chen & Weinan Jiang & Yibing Wang & Jiayang Xie & Kaiqian Ma & Chao Shi & Haodong Zhang & Minzhang Chen & Jianglin Wan & Pengcheng Ma & Jingcheng Zou & Wenjing Zhang , 2021. "A sandcastle worm-inspired strategy to functionalize wet hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51218-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.