IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38236-8.html
   My bibliography  Save this article

Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems

Author

Listed:
  • Chongrui Zhang

    (Huazhong University of Science and Technology)

  • Xufei Liu

    (Huazhong University of Science and Technology)

  • Jiang Gong

    (Huazhong University of Science and Technology)

  • Qiang Zhao

    (Huazhong University of Science and Technology)

Abstract

Aqueous two-phase systems (ATPS) provide imperative interfaces and compartments in biology, but the sculpture and conversion of liquid structures to functional solids is challenging. Here, inspired by phase evolution of mussel foot proteins ATPS, we tackle this problem by designing poly(ionic liquids) capable of responsive condensation and phase-dependent curing. When mixed with poly(dimethyl diallyl ammonium chloride), the poly(ionic liquids) formed liquid condensates and ATPS, which were tuned into bicontinuous liquid phases under stirring. Selective, rapid curing of the poly(ionic liquids)-rich phase was facilitated under basic conditions (pH 11), leading to the liquid-to-gel conversion and structure sculpture, i.e., the evolution from ATPS to macroporous sponges featuring bead-and-string networks. This mechanism enabled the selective embedment of carbon nanotubes in the poly(ionic liquids)-rich phase, which showed exceptional stability in harsh conditions (10 wt% NaCl, 80 oC, 3 days) and high (2.5 kg/m2h) solar thermal desalination of concentrated salty water under 1-sun irradiation.

Suggested Citation

  • Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38236-8
    DOI: 10.1038/s41467-023-38236-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38236-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38236-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sihan Tang & Jiang Gong & Yunsong Shi & Shifeng Wen & Qiang Zhao, 2022. "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Olgierd Cybulski & Miroslaw Dygas & Barbara Mikulak-Klucznik & Marta Siek & Tomasz Klucznik & Seong Yeol Choi & Robert J. Mitchell & Yaroslav I. Sobolev & Bartosz A. Grzybowski, 2020. "Concentric liquid reactors for chemical synthesis and separation," Nature, Nature, vol. 586(7827), pages 57-63, October.
    3. Yiran Li & Jing Cheng & Peyman Delparastan & Haoqi Wang & Severin J. Sigg & Kelsey G. DeFrates & Yi Cao & Phillip B. Messersmith, 2020. "Molecular design principles of Lysine-DOPA wet adhesion," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Franziska Jehle & Elena Macías-Sánchez & Sanja Sviben & Peter Fratzl & Luca Bertinetti & Matthew J. Harrington, 2020. "Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Chao Ma & Jing Sun & Bo Li & Yang Feng & Yao Sun & Li Xiang & Baiheng Wu & Lingling Xiao & Baimei Liu & Vladislav S. Petrovskii & Liu & Jinrui Zhang & Zili Wang & Hongyan Li & Lei Zhang & Jingjing Li , 2021. "Ultra-strong bio-glue from genetically engineered polypeptides," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Ye Lu & Longlong Jiang & Yang Yu & Dehua Wang & Wentao Sun & Yang Liu & Jing Yu & Jun Zhang & Kai Wang & Han Hu & Xiao Wang & Qingming Ma & Xiaoxiong Wang, 2022. "Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Tobias Priemel & Elena Degtyar & Mason N. Dean & Matthew J. Harrington, 2017. "Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    8. Franziska Jehle & Elena Macías-Sánchez & Sanja Sviben & Peter Fratzl & Luca Bertinetti & Matthew J. Harrington, 2020. "Author Correction: Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    9. Wenqian Feng & Yu Chai & Joe Forth & Paul D. Ashby & Thomas P. Russell & Brett A. Helms, 2019. "Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    10. Hadi M. Fares & Alexander E. Marras & Jeffrey M. Ting & Matthew V. Tirrell & Christine D. Keating, 2020. "Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    11. Tina Ukmar-Godec & Saskia Hutten & Matthew P. Grieshop & Nasrollah Rezaei-Ghaleh & Maria-Sol Cima-Omori & Jacek Biernat & Eckhard Mandelkow & Johannes Söding & Dorothee Dormann & Markus Zweckstetter, 2019. "Lysine/RNA-interactions drive and regulate biomolecular condensation," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    12. Parisa Bazazi & Howard A. Stone & S. Hossein Hejazi, 2022. "Spongy all-in-liquid materials by in-situ formation of emulsions at oil-water interfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Wei Guo & Andrew B. Kinghorn & Yage Zhang & Qingchuan Li & Aditi Dey Poonam & Julian A. Tanner & Ho Cheung Shum, 2021. "Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Sai Zhao & Yongkang Jiang & Yuchen Fu & Wei Chen & Qinrong Zhang & Liulin He & Changxiong Huang & Yao Liu & Xiao Cheng Zeng & Yu Chai, 2024. "Chaperone solvent-assisted assembly of polymers at the interface of two immiscible liquids," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Sihan Tang & Jiang Gong & Yunsong Shi & Shifeng Wen & Qiang Zhao, 2022. "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jun Zhang & Wenxiang Wang & Yan Zhang & Qiang Wei & Fei Han & Shengyi Dong & Dongqing Liu & Shiguo Zhang, 2022. "Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Jialin Zhang & Yanjun Liu & Peiyi Wu, 2024. "An elastic piezoelectric nanomembrane with double noise reduction for high-quality bandpass acoustics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Youngsun Kim & Hongru Ding & Yuebing Zheng, 2022. "Investigating water/oil interfaces with opto-thermophoresis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jing Sun & Haonan He & Kelu Zhao & Wenhao Cheng & Yuanxin Li & Peng Zhang & Sikang Wan & Yawei Liu & Mengyao Wang & Ming Li & Zheng Wei & Bo Li & Yi Zhang & Cong Li & Yao Sun & Jianlei Shen & Jingjing, 2023. "Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Giuseppe Sicoli & Daniel Sieme & Kerstin Overkamp & Mahdi Khalil & Robin Backer & Christian Griesinger & Dieter Willbold & Nasrollah Rezaei-Ghaleh, 2024. "Large dynamics of a phase separating arginine-glycine-rich domain revealed via nuclear and electron spins," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Yuhe Shen & Rongxin Su & Dongzhao Hao & Xiaojian Xu & Meital Reches & Jiwei Min & Heng Chang & Tao Yu & Qing Li & Xiaoyu Zhang & Yuefei Wang & Yuefei Wang & Wei Qi, 2023. "Enzymatic polymerization of enantiomeric L−3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Yongchun Liu & Ke Li & Juanhua Tian & Aiting Gao & Lihua Tian & Hao Su & Shuting Miao & Fei Tao & Hao Ren & Qingmin Yang & Jing Cao & Peng Yang, 2023. "Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Qi Guo & Guijin Zou & Xuliang Qian & Shujun Chen & Huajian Gao & Jing Yu, 2022. "Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Viet Sang Doan & Ibraheem Alshareedah & Anurag Singh & Priya R. Banerjee & Sangwoo Shin, 2024. "Diffusiophoresis promotes phase separation and transport of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Seola Lee & Pierre J. Walker & Seneca J. Velling & Amylynn Chen & Zane W. Taylor & Cyrus J.B.M Fiori & Vatsa Gandhi & Zhen-Gang Wang & Julia R. Greer, 2024. "Molecular control via dynamic bonding enables material responsiveness in additively manufactured metallo-polyelectrolytes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Mofan Feng & Xiaoxi Wei & Xi Zheng & Liangjie Liu & Lin Lin & Manying Xia & Guang He & Yi Shi & Qing Lu, 2024. "Decoding Missense Variants by Incorporating Phase Separation via Machine Learning," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Yingxue Sun & Yuanyi Zhao & Xinjian Xie & Hongjiao Li & Wenqian Feng, 2024. "Printed polymer platform empowering machine-assisted chemical synthesis in stacked droplets," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38236-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.