IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44284-x.html
   My bibliography  Save this article

Selective amide bond formation in redox-active coacervate protocells

Author

Listed:
  • Jiahua Wang

    (Radboud University
    Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital)

  • Manzar Abbas

    (Radboud University)

  • Junyou Wang

    (East China University of Science and Technology)

  • Evan Spruijt

    (Radboud University)

Abstract

Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life’s building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63−) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63− inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63−/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63−-containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.

Suggested Citation

  • Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44284-x
    DOI: 10.1038/s41467-023-44284-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44284-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44284-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karina K. Nakashima & Merlijn H. I. Haren & Alain A. M. André & Irina Robu & Evan Spruijt, 2021. "Active coacervate droplets are protocells that grow and resist Ostwald ripening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Carsten Donau & Fabian Späth & Marilyne Sosson & Brigitte A. K. Kriebisch & Fabian Schnitter & Marta Tena-Solsona & Hyun-Seo Kang & Elia Salibi & Michael Sattler & Hannes Mutschler & Job Boekhoven, 2020. "Active coacervate droplets as a model for membraneless organelles and protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Pierre Canavelli & Saidul Islam & Matthew W. Powner, 2019. "Peptide ligation by chemoselective aminonitrile coupling in water," Nature, Nature, vol. 571(7766), pages 546-549, July.
    4. Raghav R. Poudyal & Rebecca M. Guth-Metzler & Andrew J. Veenis & Erica A. Frankel & Christine D. Keating & Philip C. Bevilacqua, 2019. "Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Siddharth Deshpande & Frank Brandenburg & Anson Lau & Mart G. F. Last & Willem Kasper Spoelstra & Louis Reese & Sreekar Wunnava & Marileen Dogterom & Cees Dekker, 2019. "Spatiotemporal control of coacervate formation within liposomes," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Fatma Pir Cakmak & Saehyun Choi & McCauley O. Meyer & Philip C. Bevilacqua & Christine D. Keating, 2020. "Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Bartosz Gabryelczyk & Hao Cai & Xiangyan Shi & Yue Sun & Piet J. M. Swinkels & Stefan Salentinig & Konstantin Pervushin & Ali Miserez, 2019. "Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    8. Wiggert J. Altenburg & N. Amy Yewdall & Daan F. M. Vervoort & Marleen H. M. E. Stevendaal & Alexander F. Mason & Jan C. M. Hest, 2020. "Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Björn Drobot & Juan M. Iglesias-Artola & Kristian Vay & Viktoria Mayr & Mrityunjoy Kar & Moritz Kreysing & Hannes Mutschler & T-Y Dora Tang, 2018. "Compartmentalised RNA catalysis in membrane-free coacervate protocells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Rihe Liu & Leslie E. Orgel, 1997. "Oxidative acylation using thioacids," Nature, Nature, vol. 389(6646), pages 52-54, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoupeng Cao & Tsvetomir Ivanov & Julian Heuer & Calum T. J. Ferguson & Katharina Landfester & Lucas Caire da Silva, 2024. "Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Tommaso P. Fraccia & Nicolas Martin, 2023. "Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Andrea Testa & Mirco Dindo & Aleksander A. Rebane & Babak Nasouri & Robert W. Style & Ramin Golestanian & Eric R. Dufresne & Paola Laurino, 2021. "Sustained enzymatic activity and flow in crowded protein droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Peiying Li & Philipp Holliger & Shunsuke Tagami, 2022. "Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Moran Frenkel-Pinter & Marcos Bouza & Facundo M. Fernández & Luke J. Leman & Loren Dean Williams & Nicholas V. Hud & Aikomari Guzman-Martinez, 2022. "Thioesters provide a plausible prebiotic path to proto-peptides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Hanjin Seo & Hyomin Lee, 2022. "Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Avik Samanta & Maximilian Hörner & Wei Liu & Wilfried Weber & Andreas Walther, 2022. "Signal-processing and adaptive prototissue formation in metabolic DNA protocells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Annalena Salditt & Leonie Karr & Elia Salibi & Kristian Vay & Dieter Braun & Hannes Mutschler, 2023. "Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Qi Guo & Guijin Zou & Xuliang Qian & Shujun Chen & Huajian Gao & Jing Yu, 2022. "Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Vincent Ouazan-Reboul & Jaime Agudo-Canalejo & Ramin Golestanian, 2023. "Self-organization of primitive metabolic cycles due to non-reciprocal interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Sihan Tang & Jiang Gong & Yunsong Shi & Shifeng Wen & Qiang Zhao, 2022. "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44284-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.