Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-33545-w
Download full text from publisher
References listed on IDEAS
- Luigi Petrone & Akshita Kumar & Clarinda N. Sutanto & Navinkumar J. Patil & Srinivasaraghavan Kannan & Alagappan Palaniappan & Shahrouz Amini & Bruno Zappone & Chandra Verma & Ali Miserez, 2015. "Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
- Bartosz Gabryelczyk & Hao Cai & Xiangyan Shi & Yue Sun & Piet J. M. Swinkels & Stefan Salentinig & Konstantin Pervushin & Ali Miserez, 2019. "Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
- Guokui Qin & Xiao Hu & Peggy Cebe & David L. Kaplan, 2012. "Mechanism of resilin elasticity," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
- Tobias Priemel & Elena Degtyar & Mason N. Dean & Matthew J. Harrington, 2017. "Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wonjun Yim & Zhicheng Jin & Yu-Ci Chang & Carlos Brambila & Matthew N. Creyer & Chuxuan Ling & Tengyu He & Yi Li & Maurice Retout & William F. Penny & Jiajing Zhou & Jesse V. Jokerst, 2024. "Polyphenol-stabilized coacervates for enzyme-triggered drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yue Sun & Xi Wu & Jianguo Li & Milad Radiom & Raffaele Mezzenga & Chandra Shekhar Verma & Jing Yu & Ali Miserez, 2024. "Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yuhe Shen & Rongxin Su & Dongzhao Hao & Xiaojian Xu & Meital Reches & Jiwei Min & Heng Chang & Tao Yu & Qing Li & Xiaoyu Zhang & Yuefei Wang & Yuefei Wang & Wei Qi, 2023. "Enzymatic polymerization of enantiomeric L−3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Yongchun Liu & Ke Li & Juanhua Tian & Aiting Gao & Lihua Tian & Hao Su & Shuting Miao & Fei Tao & Hao Ren & Qingmin Yang & Jing Cao & Peng Yang, 2023. "Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Elio J. Challita & Prateek Sehgal & Rodrigo Krugner & M. Saad Bhamla, 2023. "Droplet superpropulsion in an energetically constrained insect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33545-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.