IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33545-w.html
   My bibliography  Save this article

Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides

Author

Listed:
  • Qi Guo

    (Nanyang Technological University (NTU))

  • Guijin Zou

    (Institute of High Performance Computing, A*STAR)

  • Xuliang Qian

    (Nanyang Technological University (NTU))

  • Shujun Chen

    (Nanyang Technological University (NTU))

  • Huajian Gao

    (Institute of High Performance Computing, A*STAR
    Nanyang Technological University (NTU))

  • Jing Yu

    (Nanyang Technological University (NTU)
    Nanyang Technological University (NTU))

Abstract

Marine mussels achieve strong underwater adhesion by depositing mussel foot proteins (Mfps) that form coacervates during the protein secretion. However, the molecular mechanisms that govern the phase separation behaviors of the Mfps are still not fully understood. Here, we report that GK-16*, a peptide derived from the primary adhesive protein Mfp-5, forms coacervate in seawater conditions. Molecular dynamics simulations combined with point mutation experiments demonstrate that Dopa- and Gly- mediated hydrogen-bonding interactions are essential in the coacervation process. The properties of GK-16* coacervates could be controlled by tuning the strength of the electrostatic and Dopa-mediated hydrogen bond interactions via controlling the pH and salt concentration of the solution. The GK-16* coacervate undergoes a pH induced liquid-to-gel transition, which can be utilized for the underwater delivery and curing of the adhesives. Our study provides useful molecular design principles for the development of mussel-inspired peptidyl coacervate adhesives with tunable properties.

Suggested Citation

  • Qi Guo & Guijin Zou & Xuliang Qian & Shujun Chen & Huajian Gao & Jing Yu, 2022. "Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33545-w
    DOI: 10.1038/s41467-022-33545-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33545-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33545-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luigi Petrone & Akshita Kumar & Clarinda N. Sutanto & Navinkumar J. Patil & Srinivasaraghavan Kannan & Alagappan Palaniappan & Shahrouz Amini & Bruno Zappone & Chandra Verma & Ali Miserez, 2015. "Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins," Nature Communications, Nature, vol. 6(1), pages 1-12, December.
    2. Bartosz Gabryelczyk & Hao Cai & Xiangyan Shi & Yue Sun & Piet J. M. Swinkels & Stefan Salentinig & Konstantin Pervushin & Ali Miserez, 2019. "Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Guokui Qin & Xiao Hu & Peggy Cebe & David L. Kaplan, 2012. "Mechanism of resilin elasticity," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    4. Tobias Priemel & Elena Degtyar & Mason N. Dean & Matthew J. Harrington, 2017. "Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wonjun Yim & Zhicheng Jin & Yu-Ci Chang & Carlos Brambila & Matthew N. Creyer & Chuxuan Ling & Tengyu He & Yi Li & Maurice Retout & William F. Penny & Jiajing Zhou & Jesse V. Jokerst, 2024. "Polyphenol-stabilized coacervates for enzyme-triggered drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yuhe Shen & Rongxin Su & Dongzhao Hao & Xiaojian Xu & Meital Reches & Jiwei Min & Heng Chang & Tao Yu & Qing Li & Xiaoyu Zhang & Yuefei Wang & Yuefei Wang & Wei Qi, 2023. "Enzymatic polymerization of enantiomeric L−3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yongchun Liu & Ke Li & Juanhua Tian & Aiting Gao & Lihua Tian & Hao Su & Shuting Miao & Fei Tao & Hao Ren & Qingmin Yang & Jing Cao & Peng Yang, 2023. "Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Elio J. Challita & Prateek Sehgal & Rodrigo Krugner & M. Saad Bhamla, 2023. "Droplet superpropulsion in an energetically constrained insect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33545-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.