IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30834-2.html
   My bibliography  Save this article

Droplets in underlying chemical communication recreate cell interaction behaviors

Author

Listed:
  • Agustin D. Pizarro

    (Instituto de Nanosistemas, UNSAM-CONICET)

  • Claudio L. A. Berli

    (INTEC (Universidad Nacional del Litoral-CONICET) Predio CCT CONICET Santa Fe, RN 168)

  • Galo J. A. A. Soler-Illia

    (Instituto de Nanosistemas, UNSAM-CONICET)

  • Martín G. Bellino

    (Instituto de Nanociencia y Nanotecnología (CNEA-CONICET))

Abstract

The sensory-motor interaction is a hallmark of living systems. However, developing inanimate systems with “recognize and attack” abilities remains challenging. On the other hand, controlling the inter-droplet dynamics on surfaces is key in microengineering and biomedical applications. We show here that a pair of droplets can become intelligently interactive (chemospecific stimulus-response inter-droplet autonomous operation) when placed on a nanoporous thin film surface. We find an attacker-victim-like non-reciprocal interaction between spatially separated droplets leading to an only-in-one shape instability that triggers a drop projection to selectively couple, resembling cellular phenomenologies such as pseudopod emission and phagocytic-like functions. The nanopore-driven underlying communication and associated chemical activity are the main physical ingredients behind the observed behavior. Our results reveal that basic features found in many living cell types can emerge from a simple two-droplet framework. This work is a promising step towards the design of microfluidic smart robotics and for origin-of-life protocell models.

Suggested Citation

  • Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30834-2
    DOI: 10.1038/s41467-022-30834-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30834-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30834-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leonie Steinhorst & Jörg Kudla, 2017. "Sexual attraction channelled in moss," Nature, Nature, vol. 549(7670), pages 35-36, September.
    2. Karina K. Nakashima & Merlijn H. I. Haren & Alain A. M. André & Irina Robu & Evan Spruijt, 2021. "Active coacervate droplets are protocells that grow and resist Ostwald ripening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Daniel S. Seara & Vikrant Yadav & Ian Linsmeier & A. Pasha Tabatabai & Patrick W. Oakes & S. M. Ali Tabei & Shiladitya Banerjee & Michael P. Murrell, 2018. "Entropy production rate is maximized in non-contractile actomyosin," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Carlos Carmona-Fontaine & Helen K. Matthews & Sei Kuriyama & Mauricio Moreno & Graham A. Dunn & Maddy Parsons & Claudio D. Stern & Roberto Mayor, 2008. "Contact inhibition of locomotion in vivo controls neural crest directional migration," Nature, Nature, vol. 456(7224), pages 957-961, December.
    5. Yahui Xue & Jürgen Markmann & Huiling Duan & Jörg Weissmüller & Patrick Huber, 2014. "Switchable imbibition in nanoporous gold," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    6. Jianqiang Zhang & Xuejiao Wang & Zhaoyue Wang & Shangfa Pan & Bo Yi & Liqing Ai & Jun Gao & Frieder Mugele & Xi Yao, 2021. "Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Johannes Hartmann & Maximilian T. Schür & Steffen Hardt, 2022. "Manipulation and control of droplets on surfaces in a homogeneous electric field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. J. W. Taylor & S. A. Eghtesadi & L. J. Points & T. Liu & L. Cronin, 2017. "Autonomous model protocell division driven by molecular replication," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    9. D. P. Singh & A. Domínguez & U. Choudhury & S. N. Kottapalli & M. N. Popescu & S. Dietrich & P. Fischer, 2020. "Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    10. Ali J. Mazaltarim & John J. Bowen & Jay M. Taylor & Stephen A. Morin, 2021. "Dynamic manipulation of droplets using mechanically tunable microtextured chemical gradients," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Gabriel Popkin, 2016. "The physics of life," Nature, Nature, vol. 529(7584), pages 16-18, January.
    12. N. J. Cira & A. Benusiglio & M. Prakash, 2015. "Vapour-mediated sensing and motility in two-component droplets," Nature, Nature, vol. 519(7544), pages 446-450, March.
    13. Muneyuki Matsuo & Kensuke Kurihara, 2021. "Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Ouazan-Reboul & Jaime Agudo-Canalejo & Ramin Golestanian, 2023. "Self-organization of primitive metabolic cycles due to non-reciprocal interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. András Szabó & Eric Theveneau & Melissa Turan & Roberto Mayor, 2019. "Neural crest streaming as an emergent property of tissue interactions during morphogenesis," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    3. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Hanjin Seo & Hyomin Lee, 2022. "Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Bradley D. Frank & Saveh Djalali & Agata W. Baryzewska & Paolo Giusto & Peter H. Seeberger & Lukas Zeininger, 2022. "Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Aleksandr Vasilyev & Yan Liu & Nathan Hellman & Narendra Pathak & Iain A Drummond, 2012. "Mechanical Stretch and PI3K Signaling Link Cell Migration and Proliferation to Coordinate Epithelial Tubule Morphogenesis in the Zebrafish Pronephros," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
    8. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Vincent Ouazan-Reboul & Jaime Agudo-Canalejo & Ramin Golestanian, 2023. "Self-organization of primitive metabolic cycles due to non-reciprocal interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ryota Sakamoto & Michael P. Murrell, 2024. "F-actin architecture determines the conversion of chemical energy into mechanical work," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Masataka Yamao & Honda Naoki & Shin Ishii, 2011. "Multi-Cellular Logistics of Collective Cell Migration," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-11, December.
    14. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Man Hu & Feng Wang & Li Chen & Peng Huo & Yuqi Li & Xi Gu & Kai Leong Chong & Daosheng Deng, 2022. "Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Camelia G. Muresan & Zachary Gao Sun & Vikrant Yadav & A. Pasha Tabatabai & Laura Lanier & June Hyung Kim & Taeyoon Kim & Michael P. Murrell, 2022. "F-actin architecture determines constraints on myosin thick filament motion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Matthew A. Heinrich & Ricard Alert & Abraham E. Wolf & Andrej Košmrlj & Daniel J. Cohen, 2022. "Self-assembly of tessellated tissue sheets by expansion and collision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. An Li & Huizeng Li & Sijia Lyu & Zhipeng Zhao & Luanluan Xue & Zheng Li & Kaixuan Li & Mingzhu Li & Chao Sun & Yanlin Song, 2023. "Tailoring vapor film beneath a Leidenfrost drop," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Christine Chiasson-MacKenzie & Jeremie Vitte & Ching-Hui Liu & Emily A. Wright & Elizabeth A. Flynn & Shannon L. Stott & Marco Giovannini & Andrea I. McClatchey, 2023. "Cellular mechanisms of heterogeneity in NF2-mutant schwannoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30834-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.