Probing the surface charge of condensates using microelectrophoresis
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47885-2
Download full text from publisher
References listed on IDEAS
- Karina K. Nakashima & Merlijn H. I. Haren & Alain A. M. André & Irina Robu & Evan Spruijt, 2021. "Active coacervate droplets are protocells that grow and resist Ostwald ripening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Ibraheem Alshareedah & Mahdi Muhammad Moosa & Matthew Pham & Davit A. Potoyan & Priya R. Banerjee, 2021. "Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Hadi M. Fares & Alexander E. Marras & Jeffrey M. Ting & Matthew V. Tirrell & Christine D. Keating, 2020. "Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Can Xu & Nicolas Martin & Mei Li & Stephen Mann, 2022. "Living material assembly of bacteriogenic protocells," Nature, Nature, vol. 609(7929), pages 1029-1037, September.
- Fatma Pir Cakmak & Saehyun Choi & McCauley O. Meyer & Philip C. Bevilacqua & Christine D. Keating, 2020. "Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arti Sharma & Kun Dai & Mahesh D. Pol & Ralf Thomann & Yi Thomann & Subhra Kanti Roy & Charalampos G. Pappas, 2025. "Selective peptide bond formation via side chain reactivity and self-assembly of abiotic phosphates," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Simone M. Poprawa & Michele Stasi & Brigitte A. K. Kriebisch & Monika Wenisch & Judit Sastre & Job Boekhoven, 2024. "Active droplets through enzyme-free, dynamic phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Miriam Linsenmeier & Maria Hondele & Fulvio Grigolato & Eleonora Secchi & Karsten Weis & Paolo Arosio, 2022. "Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Mei Zhu & Zhenhui Li & Junbo Li & Youping Lin & Haixu Chen & Xin Qiao & Xiaoliang Wang & Xiaoman Liu & Xin Huang, 2025. "Organelle-like structural evolution of coacervate droplets induced by photopolymerization," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Dinesh Sundaravadivelu Devarajan & Jiahui Wang & Beata Szała-Mendyk & Shiv Rekhi & Arash Nikoubashman & Young C. Kim & Jeetain Mittal, 2024. "Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- David Q. P. Reis & Sara Pereira & Ana P. Ramos & Pedro M. Pereira & Leonor Morgado & Joana Calvário & Adriano O. Henriques & Mónica Serrano & Ana S. Pina, 2024. "Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Huanqing Cui & Yage Zhang & Sihan Liu & Yang Cao & Qingming Ma & Yuan Liu & Haisong Lin & Chang Li & Yang Xiao & Sammer Ul Hassan & Ho Cheung Shum, 2024. "Thermo-responsive aqueous two-phase system for two-level compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Hanjin Seo & Hyomin Lee, 2022. "Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Wonjun Yim & Zhicheng Jin & Yu-Ci Chang & Carlos Brambila & Matthew N. Creyer & Chuxuan Ling & Tengyu He & Yi Li & Maurice Retout & William F. Penny & Jiajing Zhou & Jesse V. Jokerst, 2024. "Polyphenol-stabilized coacervates for enzyme-triggered drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Yoshihiro Minagawa & Moe Yabuta & Masayuki Su’etsugu & Hiroyuki Noji, 2025. "Self-growing protocell models in aqueous two-phase system induced by internal DNA replication reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Mina Farag & Samuel R. Cohen & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2022. "Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Christian Hoffmann & Jakob Rentsch & Taka A. Tsunoyama & Akshita Chhabra & Gerard Aguilar Perez & Rajdeep Chowdhury & Franziska Trnka & Aleksandr A. Korobeinikov & Ali H. Shaib & Marcelo Ganzella & Gr, 2023. "Synapsin condensation controls synaptic vesicle sequestering and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47885-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.