IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50667-5.html
   My bibliography  Save this article

High-Q cavity interface for color centers in thin film diamond

Author

Listed:
  • Sophie W. Ding

    (Harvard University)

  • Michael Haas

    (Harvard University)

  • Xinghan Guo

    (University of Chicago)

  • Kazuhiro Kuruma

    (Harvard University
    The University of Tokyo)

  • Chang Jin

    (Harvard University)

  • Zixi Li

    (University of Chicago)

  • David D. Awschalom

    (University of Chicago
    Argonne National Laboratory)

  • Nazar Delegan

    (University of Chicago
    Argonne National Laboratory)

  • F. Joseph Heremans

    (University of Chicago
    Argonne National Laboratory)

  • Alexander A. High

    (University of Chicago
    Argonne National Laboratory)

  • Marko Loncar

    (Harvard University)

Abstract

Quantum information technology offers the potential to realize unprecedented computational resources via secure channels distributing entanglement between quantum computers. Diamond, as a host to optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend such quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential for an efficient interface between spins and photons that are used to store and communicate quantum information respectively. Here, we demonstrate one- and two-dimensional PhC cavities fabricated in thin-film diamonds, featuring quality factors (Q) of 1.8 × 105 and 1.6 × 105, respectively, the highest Qs for visible PhC cavities realized in any material. Importantly, our fabrication process is simple and high-yield, based on conventional planar fabrication techniques, in contrast to the previous with complex undercut processes. We also demonstrate fiber-coupled 1D PhC cavities with high photon extraction efficiency, and optical coupling between a single SiV center and such a cavity at 4 K achieving a Purcell factor of 18. The demonstrated photonic platform may fundamentally improve the performance and scalability of quantum nodes and expedite the development of related technologies.

Suggested Citation

  • Sophie W. Ding & Michael Haas & Xinghan Guo & Kazuhiro Kuruma & Chang Jin & Zixi Li & David D. Awschalom & Nazar Delegan & F. Joseph Heremans & Alexander A. High & Marko Loncar, 2024. "High-Q cavity interface for color centers in thin film diamond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50667-5
    DOI: 10.1038/s41467-024-50667-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50667-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50667-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Zhong & Jonathan M. Kindem & Evan Miyazono & Andrei Faraon, 2015. "Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    2. Mouktik Raha & Songtao Chen & Christopher M. Phenicie & Salim Ourari & Alan M. Dibos & Jeff D. Thompson, 2020. "Optical quantum nondemolition measurement of a single rare earth ion qubit," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Michael J. Burek & Yiwen Chu & Madelaine S. Z. Liddy & Parth Patel & Jake Rochman & Srujan Meesala & Wooyoung Hong & Qimin Quan & Mikhail D. Lukin & Marko Lončar, 2014. "High quality-factor optical nanocavities in bulk single-crystal diamond," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    4. David R. Glenn & Dominik B. Bucher & Junghyun Lee & Mikhail D. Lukin & Hongkun Park & Ronald L. Walsworth, 2018. "High-resolution magnetic resonance spectroscopy using a solid-state spin sensor," Nature, Nature, vol. 555(7696), pages 351-354, March.
    5. Preeti Ovartchaiyapong & Kenneth W. Lee & Bryan A. Myers & Ania C. Bleszynski Jayich, 2014. "Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    6. Smarak Maity & Linbo Shao & Stefan Bogdanović & Srujan Meesala & Young-Ik Sohn & Neil Sinclair & Benjamin Pingault & Michelle Chalupnik & Cleaven Chia & Lu Zheng & Keji Lai & Marko Lončar, 2020. "Coherent acoustic control of a single silicon vacancy spin in diamond," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    7. M. K. Bhaskar & R. Riedinger & B. Machielse & D. S. Levonian & C. T. Nguyen & E. N. Knall & H. Park & D. Englund & M. Lončar & D. D. Sukachev & M. D. Lukin, 2020. "Experimental demonstration of memory-enhanced quantum communication," Nature, Nature, vol. 580(7801), pages 60-64, April.
    8. Benjamin S. Miller & Léonard Bezinge & Harriet D. Gliddon & Da Huang & Gavin Dold & Eleanor R. Gray & Judith Heaney & Peter J. Dobson & Eleni Nastouli & John J. L. Morton & Rachel A. McKendry, 2020. "Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics," Nature, Nature, vol. 587(7835), pages 588-593, November.
    9. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinghan Guo & Mouzhe Xie & Anchita Addhya & Avery Linder & Uri Zvi & Stella Wang & Xiaofei Yu & Tanvi D. Deshmukh & Yuzi Liu & Ian N. Hammock & Zixi Li & Clayton T. DeVault & Amy Butcher & Aaron P. Es, 2024. "Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hodaka Kurokawa & Keidai Wakamatsu & Shintaro Nakazato & Toshiharu Makino & Hiromitsu Kato & Yuhei Sekiguchi & Hideo Kosaka, 2024. "Coherent electric field control of orbital state of a neutral nitrogen-vacancy center," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yan-Kai Tzeng & Feng Ke & Chunjing Jia & Yayuan Liu & Sulgiye Park & Minkyung Han & Mungo Frost & Xinxin Cai & Wendy L. Mao & Rodney C. Ewing & Yi Cui & Thomas P. Devereaux & Yu Lin & Steven Chu, 2024. "Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Lei Shao & Vikrant J. Gokhale & Bo Peng & Penghui Song & Jingjie Cheng & Justin Kuo & Amit Lal & Wen-Ming Zhang & Jason J. Gorman, 2022. "Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Akio Yamauchi & Saiya Fujiwara & Nobuo Kimizuka & Mizue Asada & Motoyasu Fujiwara & Toshikazu Nakamura & Jenny Pirillo & Yuh Hijikata & Nobuhiro Yanai, 2024. "Modulation of triplet quantum coherence by guest-induced structural changes in a flexible metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Aaron M. Day & Madison Sutula & Jonathan R. Dietz & Alexander Raun & Denis D. Sukachev & Mihir K. Bhaskar & Evelyn L. Hu, 2024. "Electrical manipulation of telecom color centers in silicon," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    16. E. Mehdi & M. Gundín & C. Millet & N. Somaschi & A. Lemaître & I. Sagnes & L. Gratiet & D. A. Fioretto & N. Belabas & O. Krebs & P. Senellart & L. Lanco, 2024. "Giant optical polarisation rotations induced by a single quantum dot spin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Dylan Renaud & Daniel Rimoli Assumpcao & Graham Joe & Amirhassan Shams-Ansari & Di Zhu & Yaowen Hu & Neil Sinclair & Marko Loncar, 2023. "Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Mateusz Mazelanik & Adam Leszczyński & Michał Parniak, 2022. "Optical-domain spectral super-resolution via a quantum-memory-based time-frequency processor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50667-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.