IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5429.html
   My bibliography  Save this article

Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

Author

Listed:
  • Preeti Ovartchaiyapong

    (University of California Santa Barbara, Broida Hall)

  • Kenneth W. Lee

    (University of California Santa Barbara, Broida Hall)

  • Bryan A. Myers

    (University of California Santa Barbara, Broida Hall)

  • Ania C. Bleszynski Jayich

    (University of California Santa Barbara, Broida Hall)

Abstract

The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen–vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen–vacancy spin–strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen–vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen–vacancy ground-state spin. The nitrogen–vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10−6 strain Hz−1/2. Finally, we show how this spin-resonator system could enable coherent spin–phonon interactions in the quantum regime.

Suggested Citation

  • Preeti Ovartchaiyapong & Kenneth W. Lee & Bryan A. Myers & Ania C. Bleszynski Jayich, 2014. "Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5429
    DOI: 10.1038/ncomms5429
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5429
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophie W. Ding & Michael Haas & Xinghan Guo & Kazuhiro Kuruma & Chang Jin & Zixi Li & David D. Awschalom & Nazar Delegan & F. Joseph Heremans & Alexander A. High & Marko Loncar, 2024. "High-Q cavity interface for color centers in thin film diamond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. I-Tung Chen & Bingzhao Li & Seokhyeong Lee & Srivatsa Chakravarthi & Kai-Mei Fu & Mo Li, 2023. "Optomechanical ring resonator for efficient microwave-optical frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.