IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44651-8.html
   My bibliography  Save this article

Giant optical polarisation rotations induced by a single quantum dot spin

Author

Listed:
  • E. Mehdi

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
    Université Paris Cité, Centre de Nanosciences et de Nanotechnologies)

  • M. Gundín

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • C. Millet

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • N. Somaschi

    (Quandela)

  • A. Lemaître

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • I. Sagnes

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • L. Gratiet

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • D. A. Fioretto

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
    Quandela)

  • N. Belabas

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • O. Krebs

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • P. Senellart

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • L. Lanco

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
    Université Paris Cité, Centre de Nanosciences et de Nanotechnologies
    Institut Universitaire de France (IUF))

Abstract

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by $$\frac{\pi }{2}$$ π 2 , π, and $$-\frac{\pi }{2}$$ − π 2 in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

Suggested Citation

  • E. Mehdi & M. Gundín & C. Millet & N. Somaschi & A. Lemaître & I. Sagnes & L. Gratiet & D. A. Fioretto & N. Belabas & O. Krebs & P. Senellart & L. Lanco, 2024. "Giant optical polarisation rotations induced by a single quantum dot spin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44651-8
    DOI: 10.1038/s41467-023-44651-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44651-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44651-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiling Wang & Zenghui Bao & Yan Li & Yukai Wu & Weizhou Cai & Weiting Wang & Xiyue Han & Jiahui Wang & Yipu Song & Luyan Sun & Hongyi Zhang & Luming Duan, 2022. "An ultra-high gain single-photon transistor in the microwave regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Andreas Reiserer & Norbert Kalb & Gerhard Rempe & Stephan Ritter, 2014. "A quantum gate between a flying optical photon and a single trapped atom," Nature, Nature, vol. 508(7495), pages 237-240, April.
    3. M. K. Bhaskar & R. Riedinger & B. Machielse & D. S. Levonian & C. T. Nguyen & E. N. Knall & H. Park & D. Englund & M. Lončar & D. D. Sukachev & M. D. Lukin, 2020. "Experimental demonstration of memory-enhanced quantum communication," Nature, Nature, vol. 580(7801), pages 60-64, April.
    4. Bastian Hacker & Stephan Welte & Gerhard Rempe & Stephan Ritter, 2016. "A photon–photon quantum gate based on a single atom in an optical resonator," Nature, Nature, vol. 536(7615), pages 193-196, August.
    5. T. G. Tiecke & J. D. Thompson & N. P. de Leon & L. R. Liu & V. Vuletić & M. D. Lukin, 2014. "Nanophotonic quantum phase switch with a single atom," Nature, Nature, vol. 508(7495), pages 241-244, April.
    6. Christophe Arnold & Justin Demory & Vivien Loo & Aristide Lemaître & Isabelle Sagnes & Mikhaïl Glazov & Olivier Krebs & Paul Voisin & Pascale Senellart & Loïc Lanco, 2015. "Macroscopic rotation of photon polarization induced by a single spin," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prataviera, G.A. & de Oliveira, M.C., 2015. "Susceptibility of a two-level atom near an isotropic photonic band edge: Transparency and band edge profile reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 34-40.
    2. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    4. Yan-Kai Tzeng & Feng Ke & Chunjing Jia & Yayuan Liu & Sulgiye Park & Minkyung Han & Mungo Frost & Xinxin Cai & Wendy L. Mao & Rodney C. Ewing & Yi Cui & Thomas P. Devereaux & Yu Lin & Steven Chu, 2024. "Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Akio Yamauchi & Saiya Fujiwara & Nobuo Kimizuka & Mizue Asada & Motoyasu Fujiwara & Toshikazu Nakamura & Jenny Pirillo & Yuh Hijikata & Nobuhiro Yanai, 2024. "Modulation of triplet quantum coherence by guest-induced structural changes in a flexible metal-organic framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Aaron M. Day & Madison Sutula & Jonathan R. Dietz & Alexander Raun & Denis D. Sukachev & Mihir K. Bhaskar & Evelyn L. Hu, 2024. "Electrical manipulation of telecom color centers in silicon," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Sophie W. Ding & Michael Haas & Xinghan Guo & Kazuhiro Kuruma & Chang Jin & Zixi Li & David D. Awschalom & Nazar Delegan & F. Joseph Heremans & Alexander A. High & Marko Loncar, 2024. "High-Q cavity interface for color centers in thin film diamond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Pei-Yuan Wu & Wei-Qing Lee & Chang-Hua Liu & Chen-Bin Huang, 2024. "Coherent control of enhanced second-harmonic generation in a plasmonic nanocircuit using a transition metal dichalcogenide monolayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Zhiling Wang & Zenghui Bao & Yan Li & Yukai Wu & Weizhou Cai & Weiting Wang & Xiyue Han & Jiahui Wang & Yipu Song & Luyan Sun & Hongyi Zhang & Luming Duan, 2022. "An ultra-high gain single-photon transistor in the microwave regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Lukasz Komza & Polnop Samutpraphoot & Mutasem Odeh & Yu-Lung Tang & Milena Mathew & Jiu Chang & Hanbin Song & Myung-Ki Kim & Yihuang Xiong & Geoffroy Hautier & Alp Sipahigil, 2024. "Indistinguishable photons from an artificial atom in silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    14. Xinghan Guo & Mouzhe Xie & Anchita Addhya & Avery Linder & Uri Zvi & Stella Wang & Xiaofei Yu & Tanvi D. Deshmukh & Yuzi Liu & Ian N. Hammock & Zixi Li & Clayton T. DeVault & Amy Butcher & Aaron P. Es, 2024. "Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Mihika Prabhu & Carlos Errando-Herranz & Lorenzo Santis & Ian Christen & Changchen Chen & Connor Gerlach & Dirk Englund, 2023. "Individually addressable and spectrally programmable artificial atoms in silicon photonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Hodaka Kurokawa & Keidai Wakamatsu & Shintaro Nakazato & Toshiharu Makino & Hiromitsu Kato & Yuhei Sekiguchi & Hideo Kosaka, 2024. "Coherent electric field control of orbital state of a neutral nitrogen-vacancy center," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Adam Johnston & Ulises Felix-Rendon & Yu-En Wong & Songtao Chen, 2024. "Cavity-coupled telecom atomic source in silicon," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Wenhao Wang & Yogesh Kumar Srivastava & Thomas CaiWei Tan & Zhiming Wang & Ranjan Singh, 2023. "Brillouin zone folding driven bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44651-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.