IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.08143.html
   My bibliography  Save this paper

Artificial intelligence and the transformation of higher education institutions

Author

Listed:
  • Evangelos Katsamakas
  • Oleg V. Pavlov
  • Ryan Saklad

Abstract

Artificial intelligence (AI) advances and the rapid adoption of generative AI tools like ChatGPT present new opportunities and challenges for higher education. While substantial literature discusses AI in higher education, there is a lack of a systemic approach that captures a holistic view of the AI transformation of higher education institutions (HEIs). To fill this gap, this article, taking a complex systems approach, develops a causal loop diagram (CLD) to map the causal feedback mechanisms of AI transformation in a typical HEI. Our model accounts for the forces that drive the AI transformation and the consequences of the AI transformation on value creation in a typical HEI. The article identifies and analyzes several reinforcing and balancing feedback loops, showing how, motivated by AI technology advances, the HEI invests in AI to improve student learning, research, and administration. The HEI must take measures to deal with academic integrity problems and adapt to changes in available jobs due to AI, emphasizing AI-complementary skills for its students. However, HEIs face a competitive threat and several policy traps that may lead to decline. HEI leaders need to become systems thinkers to manage the complexity of the AI transformation and benefit from the AI feedback loops while avoiding the associated pitfalls. We also discuss long-term scenarios, the notion of HEIs influencing the direction of AI, and directions for future research on AI transformation.

Suggested Citation

  • Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
  • Handle: RePEc:arx:papers:2402.08143
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.08143
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2020. "The wrong kind of AI? Artificial intelligence and the future of labour demand," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 25-35.
    2. Pavlov, Oleg V. & Katsamakas, Evangelos, 2023. "Tuition too high? Blame competition," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 409-431.
    3. Samuel A Swift & Don A Moore & Zachariah S Sharek & Francesca Gino, 2013. "Inflated Applicants: Attribution Errors in Performance Evaluation by Professionals," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-15, July.
    4. Ed Felten & Manav Raj & Robert Seamans, 2023. "How will Language Modelers like ChatGPT Affect Occupations and Industries?," Papers 2303.01157, arXiv.org, revised Mar 2023.
    5. Oleg V Pavlov & Evangelos Katsamakas, 2020. "Will colleges survive the storm of declining enrollments? A computational model," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-29, August.
    6. Vu Khanh Quy & Bui Trung Thanh & Abdellah Chehri & Dao Manh Linh & Do Anh Tuan, 2023. "AI and Digital Transformation in Higher Education: Vision and Approach of a Specific University in Vietnam," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    7. Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
    8. Richard Van Noorden & Jeffrey M. Perkel, 2023. "AI and science: what 1,600 researchers think," Nature, Nature, vol. 621(7980), pages 672-675, September.
    9. Alex Davies & Petar Veličković & Lars Buesing & Sam Blackwell & Daniel Zheng & Nenad Tomašev & Richard Tanburn & Peter Battaglia & Charles Blundell & András Juhász & Marc Lackenby & Geordie Williamson, 2021. "Advancing mathematics by guiding human intuition with AI," Nature, Nature, vol. 600(7887), pages 70-74, December.
    10. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
    11. Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024. "Artificial intelligence and scientific discovery: a model of prioritized search," Research Policy, Elsevier, vol. 53(5).
    12. Eva A. M. van Dis & Johan Bollen & Willem Zuidema & Robert van Rooij & Claudi L. Bockting, 2023. "ChatGPT: five priorities for research," Nature, Nature, vol. 614(7947), pages 224-226, February.
    13. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    14. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
    15. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    16. Temitayo Shenkoya & Euiseok Kim, 2023. "Sustainability in Higher Education: Digital Transformation of the Fourth Industrial Revolution and Its Impact on Open Knowledge," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    17. Stanislav Ivanov, 2023. "The dark side of artificial intelligence in higher education," The Service Industries Journal, Taylor & Francis Journals, vol. 43(15-16), pages 1055-1082, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
    2. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    3. Anil R. Doshi & Oliver P. Hauser, 2023. "Generative artificial intelligence enhances creativity but reduces the diversity of novel content," Papers 2312.00506, arXiv.org, revised Mar 2024.
    4. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," DISCE - Quaderni del Dipartimento di Politica Economica dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    5. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    6. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "Is Artificial Intelligence Generating a New Paradigm? Evidence from the Emerging Phase," IZA Discussion Papers 17183, Institute of Labor Economics (IZA).
    7. Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
    8. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    9. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    10. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    11. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    12. Caleb Peppiatt, 2024. "The Future of Work: Inequality, Artificial Intelligence, and What Can Be Done About It. A Literature Review," Papers 2408.13300, arXiv.org.
    13. D'Al, Francesco & Santarelli, Enrico & Vivarelli, Marco, 2024. "The KSTE+I approach and the advent of AI technologies: evidence from the European regions," GLO Discussion Paper Series 1473, Global Labor Organization (GLO).
    14. D'Allesandro, Francesco & Santarelli, Enrico & Vivarelli, Marco, 2024. "The KSTE+I approach and the AI technologies," MERIT Working Papers 2024-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).
    16. Ylenia Curci & Nathalie Greenan & Silvia Napolitano, 2024. "Innovating for the good or for the bad. An EU-wide analysis of the impact of technological transformation on job polarisation and unemployment," TEPP Working Paper 2024-02, TEPP.
    17. Christian Peukert & Florian Abeillon & Jérémie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," CESifo Working Paper Series 11099, CESifo.
    18. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Jin Liu & Xingchen Xu & Xi Nan & Yongjun Li & Yong Tan, 2023. ""Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets," Papers 2308.05201, arXiv.org, revised Jun 2024.
    20. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.08143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.