IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51246-4.html
   My bibliography  Save this article

Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation

Author

Listed:
  • Zengyu Shao

    (University of California)

  • Jiuwei Lu

    (University of California)

  • Nelli Khudaverdyan

    (University of California)

  • Jikui Song

    (University of California)

Abstract

Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.

Suggested Citation

  • Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51246-4
    DOI: 10.1038/s41467-024-51246-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51246-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51246-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hisashi Tamaru & Eric U. Selker, 2001. "A histone H3 methyltransferase controls DNA methylation in Neurospora crassa," Nature, Nature, vol. 414(6861), pages 277-283, November.
    2. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ryan Lister & Mattia Pelizzola & Robert H. Dowen & R. David Hawkins & Gary Hon & Julian Tonti-Filippini & Joseph R. Nery & Leonard Lee & Zhen Ye & Que-Minh Ngo & Lee Edsall & Jessica Antosiewicz-Bourg, 2009. "Human DNA methylomes at base resolution show widespread epigenomic differences," Nature, Nature, vol. 462(7271), pages 315-322, November.
    4. James P. Jackson & Anders M. Lindroth & Xiaofeng Cao & Steven E. Jacobsen, 2002. "Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase," Nature, Nature, vol. 416(6880), pages 556-560, April.
    5. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    6. Atsuya Nishiyama & Luna Yamaguchi & Jafar Sharif & Yoshikazu Johmura & Takeshi Kawamura & Keiko Nakanishi & Shintaro Shimamura & Kyohei Arita & Tatsuhiko Kodama & Fuyuki Ishikawa & Haruhiko Koseki & M, 2013. "Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication," Nature, Nature, vol. 502(7470), pages 249-253, October.
    7. Andrew J. Bannister & Philip Zegerman & Janet F. Partridge & Eric A. Miska & Jean O. Thomas & Robin C. Allshire & Tony Kouzarides, 2001. "Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain," Nature, Nature, vol. 410(6824), pages 120-124, March.
    8. Wendan Ren & Huitao Fan & Sara A. Grimm & Jae Jin Kim & Linhui Li & Yiran Guo & Christopher James Petell & Xiao-Feng Tan & Zhi-Min Zhang & John P. Coan & Jiekai Yin & Dae In Kim & Linfeng Gao & Ling C, 2021. "DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Ian R. Henderson & Steven E. Jacobsen, 2007. "Epigenetic inheritance in plants," Nature, Nature, vol. 447(7143), pages 418-424, May.
    10. Linfeng Gao & Max Emperle & Yiran Guo & Sara A. Grimm & Wendan Ren & Sabrina Adam & Hidetaka Uryu & Zhi-Min Zhang & Dongliang Chen & Jiekai Yin & Michael Dukatz & Hiwot Anteneh & Renata Z. Jurkowska &, 2020. "Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    11. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    13. Hiwot Anteneh & Jian Fang & Jikui Song, 2020. "Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    14. Daniele Canzio & Maofu Liao & Nariman Naber & Edward Pate & Adam Larson & Shenping Wu & Diana B. Marina & Jennifer F. Garcia & Hiten D. Madhani & Roger Cooke & Peter Schuck & Yifan Cheng & Geeta J. Na, 2013. "A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly," Nature, Nature, vol. 496(7445), pages 377-381, April.
    15. Zhi-Min Zhang & Rui Lu & Pengcheng Wang & Yang Yu & Dongliang Chen & Linfeng Gao & Shuo Liu & Debin Ji & Scott B Rothbart & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2018. "Structural basis for DNMT3A-mediated de novo DNA methylation," Nature, Nature, vol. 554(7692), pages 387-391, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    11. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51246-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.