IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v449y2007i7159d10.1038_nature06146.html
   My bibliography  Save this article

Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation

Author

Listed:
  • Da Jia

    (Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA)

  • Renata Z. Jurkowska

    (Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1)

  • Xing Zhang

    (Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA)

  • Albert Jeltsch

    (Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1)

  • Xiaodong Cheng

    (Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA)

Abstract

A crystal structure of a complex between the DNA methyltransferase regulatory factor Dnmt3L and the catalytic domain of Dnmt3a leads to a model being proposed for the preferential methylation of DNA on maternally imprinted genes.

Suggested Citation

  • Da Jia & Renata Z. Jurkowska & Xing Zhang & Albert Jeltsch & Xiaodong Cheng, 2007. "Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation," Nature, Nature, vol. 449(7159), pages 248-251, September.
  • Handle: RePEc:nat:nature:v:449:y:2007:i:7159:d:10.1038_nature06146
    DOI: 10.1038/nature06146
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06146
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Jiyun Chen & Rong Hu & Ying Chen & Xiaofeng Lin & Wenwen Xiang & Hong Chen & Canglin Yao & Liang Liu, 2022. "Structural basis for MTA1c-mediated DNA N6-adenine methylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    6. Gaolian Xu & Hao Yang & Jiani Qiu & Julien Reboud & Linqing Zhen & Wei Ren & Hong Xu & Jonathan M. Cooper & Hongchen Gu, 2023. "Sequence terminus dependent PCR for site-specific mutation and modification detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:449:y:2007:i:7159:d:10.1038_nature06146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.