IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v616y2023i7957d10.1038_s41586-023-05819-w.html
   My bibliography  Save this article

Ballistic two-dimensional InSe transistors

Author

Listed:
  • Jianfeng Jiang

    (Peking University)

  • Lin Xu

    (Peking University)

  • Chenguang Qiu

    (Peking University)

  • Lian-Mao Peng

    (Peking University)

Abstract

The International Roadmap for Devices and Systems (IRDS) forecasts that, for silicon-based metal–oxide–semiconductor (MOS) field-effect transistors (FETs), the scaling of the gate length will stop at 12 nm and the ultimate supply voltage will not decrease to less than 0.6 V (ref. 1). This defines the final integration density and power consumption at the end of the scaling process for silicon-based chips. In recent years, two-dimensional (2D) layered semiconductors with atom-scale thicknesses have been explored as potential channel materials to support further miniaturization and integrated electronics. However, so far, no 2D semiconductor-based FETs have exhibited performances that can surpass state-of-the-art silicon FETs. Here we report a FET with 2D indium selenide (InSe) with high thermal velocity as channel material that operates at 0.5 V and achieves record high transconductance of 6 mS μm−1 and a room-temperature ballistic ratio in the saturation region of 83%, surpassing those of any reported silicon FETs. An yttrium-doping-induced phase-transition method is developed for making ohmic contacts with InSe and the InSe FET is scaled down to 10 nm in channel length. Our InSe FETs can effectively suppress short-channel effects with a low subthreshold swing (SS) of 75 mV per decade and drain-induced barrier lowering (DIBL) of 22 mV V−1. Furthermore, low contact resistance of 62 Ω μm is reliably extracted in 10-nm ballistic InSe FETs, leading to a smaller intrinsic delay and much lower energy-delay product (EDP) than the predicted silicon limit.

Suggested Citation

  • Jianfeng Jiang & Lin Xu & Chenguang Qiu & Lian-Mao Peng, 2023. "Ballistic two-dimensional InSe transistors," Nature, Nature, vol. 616(7957), pages 470-475, April.
  • Handle: RePEc:nat:nature:v:616:y:2023:i:7957:d:10.1038_s41586-023-05819-w
    DOI: 10.1038/s41586-023-05819-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05819-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05819-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7957:d:10.1038_s41586-023-05819-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.