IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47688-5.html
   My bibliography  Save this article

Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface

Author

Listed:
  • Ruochen Shi

    (Peking University
    Peking University)

  • Qize Li

    (Peking University
    Peking University
    University of California at Berkeley)

  • Xiaofeng Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bo Han

    (Peking University
    Peking University)

  • Ruixue Zhu

    (Peking University
    Peking University)

  • Fachen Liu

    (Peking University
    Peking University)

  • Ruishi Qi

    (University of California at Berkeley)

  • Xiaowen Zhang

    (Peking University
    Peking University)

  • Jinlong Du

    (Peking University)

  • Ji Chen

    (Peking University
    Collaborative Innovation Center of Quantum Matter
    Peking University)

  • Dapeng Yu

    (Peking University
    Southern University of Science and Technology
    Hefei National Laboratory)

  • Xuetao Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiandong Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Gao

    (Peking University
    Peking University
    Collaborative Innovation Center of Quantum Matter
    Peking University)

Abstract

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

Suggested Citation

  • Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47688-5
    DOI: 10.1038/s41467-024-47688-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47688-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47688-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaitanya A. Gadre & Xingxu Yan & Qichen Song & Jie Li & Lei Gu & Huaixun Huyan & Toshihiro Aoki & Sheng-Wei Lee & Gang Chen & Ruqian Wu & Xiaoqing Pan, 2022. "Nanoscale imaging of phonon dynamics by electron microscopy," Nature, Nature, vol. 606(7913), pages 292-297, June.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Ondrej L. Krivanek & Tracy C. Lovejoy & Niklas Dellby & Toshihiro Aoki & R. W. Carpenter & Peter Rez & Emmanuel Soignard & Jiangtao Zhu & Philip E. Batson & Maureen J. Lagos & Ray F. Egerton & Peter A, 2014. "Vibrational spectroscopy in the electron microscope," Nature, Nature, vol. 514(7521), pages 209-212, October.
    4. Ruishi Qi & Ruochen Shi & Yuehui Li & Yuanwei Sun & Mei Wu & Ning Li & Jinlong Du & Kaihui Liu & Chunlin Chen & Ji Chen & Feng Wang & Dapeng Yu & En-Ge Wang & Peng Gao, 2021. "Measuring phonon dispersion at an interface," Nature, Nature, vol. 599(7885), pages 399-403, November.
    5. Zhe Cheng & Ruiyang Li & Xingxu Yan & Glenn Jernigan & Jingjing Shi & Michael E. Liao & Nicholas J. Hines & Chaitanya A. Gadre & Juan Carlos Idrobo & Eungkyu Lee & Karl D. Hobart & Mark S. Goorsky & X, 2021. "Experimental observation of localized interfacial phonon modes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Xingxu Yan & Chengyan Liu & Chaitanya A. Gadre & Lei Gu & Toshihiro Aoki & Tracy C. Lovejoy & Niklas Dellby & Ondrej L. Krivanek & Darrell G. Schlom & Ruqian Wu & Xiaoqing Pan, 2021. "Single-defect phonons imaged by electron microscopy," Nature, Nature, vol. 589(7840), pages 65-69, January.
    7. Chong Liu & Ryan P. Day & Fengmiao Li & Ryan L. Roemer & Sergey Zhdanovich & Sergey Gorovikov & Tor M. Pedersen & Juan Jiang & Sangjae Lee & Michael Schneider & Doug Wong & Pinder Dosanjh & Frederick , 2021. "High-order replica bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Ryosuke Senga & Kazu Suenaga & Paolo Barone & Shigeyuki Morishita & Francesco Mauri & Thomas Pichler, 2019. "Position and momentum mapping of vibrations in graphene nanostructures," Nature, Nature, vol. 573(7773), pages 247-250, September.
    9. Eric R. Hoglund & De-Liang Bao & Andrew O’Hara & Sara Makarem & Zachary T. Piontkowski & Joseph R. Matson & Ajay K. Yadav & Ryan C. Haislmaier & Roman Engel-Herbert & Jon F. Ihlefeld & Jayakanth Ravic, 2022. "Emergent interface vibrational structure of oxide superlattices," Nature, Nature, vol. 601(7894), pages 556-561, January.
    10. Maureen J. Lagos & Andreas Trügler & Ulrich Hohenester & Philip E. Batson, 2017. "Mapping vibrational surface and bulk modes in a single nanocube," Nature, Nature, vol. 543(7646), pages 529-532, March.
    11. Q. Song & T. L. Yu & X. Lou & B. P. Xie & H. C. Xu & C. H. P. Wen & Q. Yao & S. Y. Zhang & X. T. Zhu & J. D. Guo & R. Peng & D. L. Feng, 2019. "Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    12. Marcin Kisiel & Oleg O. Brovko & Dilek Yildiz & Rémy Pawlak & Urs Gysin & Erio Tosatti & Ernst Meyer, 2018. "Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailing Jiang & Tao Wang & Zhenyu Zhang & Fang Liu & Ruochen Shi & Bowen Sheng & Shanshan Sheng & Weikun Ge & Ping Wang & Bo Shen & Bo Sun & Peng Gao & Lucas Lindsay & Xinqiang Wang, 2024. "Atomic-scale visualization of defect-induced localized vibrations in GaN," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Zhe Cheng & Ruiyang Li & Xingxu Yan & Glenn Jernigan & Jingjing Shi & Michael E. Liao & Nicholas J. Hines & Chaitanya A. Gadre & Juan Carlos Idrobo & Eungkyu Lee & Karl D. Hobart & Mark S. Goorsky & X, 2021. "Experimental observation of localized interfacial phonon modes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Ning Li & Ruochen Shi & Yifei Li & Ruishi Qi & Fachen Liu & Xiaowen Zhang & Zhetong Liu & Yuehui Li & Xiangdong Guo & Kaihui Liu & Ying Jiang & Xin-Zheng Li & Ji Chen & Lei Liu & En-Ge Wang & Peng Gao, 2023. "Phonon transition across an isotopic interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Xiaoyang Chen & Tianlun Yu & Yuan Liu & Yanqiu Sun & Minyinan Lei & Nan Guo & Yu Fan & Xingtian Sun & Meng Zhang & Fatima Alarab & Vladimir N. Strocov & Yilin Wang & Tao Zhou & Xinyi Liu & Fanjin Lu &, 2024. "Orientation-dependent electronic structure in interfacial superconductors LaAlO3/KTaO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    9. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    10. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    11. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    12. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    13. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    14. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    15. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    16. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    17. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    18. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    19. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    20. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47688-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.