IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7773d10.1038_s41586-019-1477-8.html
   My bibliography  Save this article

Position and momentum mapping of vibrations in graphene nanostructures

Author

Listed:
  • Ryosuke Senga

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Kazu Suenaga

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Paolo Barone

    (SPIN-CNR, c/o Università G. D’Annunzio)

  • Shigeyuki Morishita

    (EM Research and Development Department, JEOL Ltd)

  • Francesco Mauri

    (Università di Roma La Sapienza
    Fondazione Istituto Italiano di Tecnologia)

  • Thomas Pichler

    (University of Vienna)

Abstract

Propagating atomic vibrational waves—phonons—determine important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus a knowledge of phonon dispersion (that is, the dependence of vibrational energy on momentum) is a key part of our understanding and optimization of a material’s behaviour. However, the phonon dispersion of a free-standing monolayer of a two-dimensional material such as graphene, and its local variations, have remained elusive for the past decade because of the experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe local vibrational charge responses1–4, such studies are still limited by momentum space integration due to the focused beam geometry; they are also restricted to polar materials such as boron nitride or oxides1–4, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic X-ray (neutron) scattering spectroscopy5–7 or EELS in reflection8,9 do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine phonon dispersions down to the scale of an individual free-standing graphene monolayer by mapping the distinct vibrational modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory10. Additionally, a nanometre-scale mapping of selected momentum-resolved vibrational modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations. Our results are a proof-of-principle demonstration of the feasibility of studying local vibrational modes in two-dimensional monolayer materials at the nanometre scale.

Suggested Citation

  • Ryosuke Senga & Kazu Suenaga & Paolo Barone & Shigeyuki Morishita & Francesco Mauri & Thomas Pichler, 2019. "Position and momentum mapping of vibrations in graphene nanostructures," Nature, Nature, vol. 573(7773), pages 247-250, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7773:d:10.1038_s41586-019-1477-8
    DOI: 10.1038/s41586-019-1477-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1477-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1477-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Jiade Li & Li Wang & Yani Wang & Zhiyu Tao & Weiliang Zhong & Zhibin Su & Siwei Xue & Guangyao Miao & Weihua Wang & Hailin Peng & Jiandong Guo & Xuetao Zhu, 2024. "Observation of the nonanalytic behavior of optical phonons in monolayer hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7773:d:10.1038_s41586-019-1477-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.