IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp164-179.html
   My bibliography  Save this article

Adaptive nonnegative matrix factorization and measure comparisons for recommender systems

Author

Listed:
  • Del Corso, Gianna M.
  • Romani, Francesco

Abstract

The Nonnegative Matrix Factorization (NMF) of the rating matrix has shown to be an effective method to tackle the recommendation problem. In this paper we propose new methods based on the NMF of the rating matrix and we compare them with some classical algorithms such as the SVD and the regularized and unregularized non-negative matrix factorization approach. In particular a new algorithm is obtained changing adaptively the function to be minimized at each step, realizing a sort of dynamic prior strategy. Another algorithm is obtained modifying the function to be minimized in the NMF formulation by enforcing the reconstruction of the unknown ratings toward a prior term. We then combine different methods obtaining two mixed strategies which turn out to be very effective in the reconstruction of missing observations. We perform a thoughtful comparison of different methods on the basis of several evaluation measures. We consider in particular rating, classification and ranking measures showing that the algorithm obtaining the best score for a given measure is in general the best also when different measures are considered, lowering the interest in designing specific evaluation measures. The algorithms have been tested on different datasets, in particular the 1M, and 10M MovieLens datasets containing ratings on movies, the Jester dataset with ranting on jokes and Amazon Fine Foods dataset with ratings on foods. The comparison of the different algorithms, shows the good performance of methods employing both an explicit and an implicit regularization scheme. Moreover we can get a boost by mixed strategies combining a fast method with a more accurate one.

Suggested Citation

  • Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:164-179
    DOI: 10.1016/j.amc.2019.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319300621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Shen, Zhao-Li & Huang, Ting-Zhu & Carpentieri, Bruno & Gu, Xian-Ming & Wen, Chun, 2017. "An efficient elimination strategy for solving PageRank problems," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 111-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    3. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    4. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    5. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    6. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    7. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    8. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.
    10. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    11. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    13. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Shen, Zhao-Li & Su, Meng & Carpentieri, Bruno & Wen, Chun, 2022. "Shifted power-GMRES method accelerated by extrapolation for solving PageRank with multiple damping factors," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    15. Xiangli Li & Hongwei Liu & Xiuyun Zheng, 2012. "Non-monotone projection gradient method for non-negative matrix factorization," Computational Optimization and Applications, Springer, vol. 51(3), pages 1163-1171, April.
    16. Ding, Chris & Li, Tao & Peng, Wei, 2008. "On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3913-3927, April.
    17. Dominik P. Koller & Michael Schirner & Petra Ritter, 2024. "Human connectome topology directs cortical traveling waves and shapes frequency gradients," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    19. Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Emelia Opoku Aboagye & Rajesh Kumar, 2019. "Simple and Efficient Computational Intelligence Strategies for Effective Collaborative Decisions," Future Internet, MDPI, vol. 11(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:164-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.