IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54921-8.html
   My bibliography  Save this article

Phonon dispersion of buckled two-dimensional GaN

Author

Listed:
  • Zhenyu Zhang

    (Peking University
    Peking University)

  • Tao Wang

    (Peking University
    Peking University)

  • Hailing Jiang

    (Peking University)

  • Xifan Xu

    (Peking University)

  • Jinlin Wang

    (Peking University)

  • Ziruo Wang

    (Peking University)

  • Fang Liu

    (Peking University)

  • Ye Yu

    (Jilin University)

  • Yuantao Zhang

    (Jilin University)

  • Ping Wang

    (Peking University)

  • Peng Gao

    (Peking University
    Peking University
    Peking University)

  • Bo Shen

    (Peking University
    Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Xinqiang Wang

    (Peking University
    Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

Abstract

Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimensional GaN remains limited due to the difficulties in experimental characterization. Here, for the first time, we have experimentally determined the phonon dispersion of buckled two-dimensional GaN by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy. A phonon band gap of ~40 meV between the acoustic and optical phonon branches is identified for buckled two-dimensional GaN. This phonon band gap is significantly larger than that of ~20 meV for the tetrahedral-coordinated three-dimensional GaN. Our theoretical calculations confirm this larger phonon band gap. Our findings provide critical insights into the phonon behavior of buckled two-dimensional GaN, which can be used to guide high-performance thermal management in GaN-based high-power devices.

Suggested Citation

  • Zhenyu Zhang & Tao Wang & Hailing Jiang & Xifan Xu & Jinlin Wang & Ziruo Wang & Fang Liu & Ye Yu & Yuantao Zhang & Ping Wang & Peng Gao & Bo Shen & Xinqiang Wang, 2024. "Phonon dispersion of buckled two-dimensional GaN," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54921-8
    DOI: 10.1038/s41467-024-54921-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54921-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54921-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ondrej L. Krivanek & Tracy C. Lovejoy & Niklas Dellby & Toshihiro Aoki & R. W. Carpenter & Peter Rez & Emmanuel Soignard & Jiangtao Zhu & Philip E. Batson & Maureen J. Lagos & Ray F. Egerton & Peter A, 2014. "Vibrational spectroscopy in the electron microscope," Nature, Nature, vol. 514(7521), pages 209-212, October.
    2. Ruishi Qi & Ruochen Shi & Yuehui Li & Yuanwei Sun & Mei Wu & Ning Li & Jinlong Du & Kaihui Liu & Chunlin Chen & Ji Chen & Feng Wang & Dapeng Yu & En-Ge Wang & Peng Gao, 2021. "Measuring phonon dispersion at an interface," Nature, Nature, vol. 599(7885), pages 399-403, November.
    3. Maureen J. Lagos & Andreas Trügler & Ulrich Hohenester & Philip E. Batson, 2017. "Mapping vibrational surface and bulk modes in a single nanocube," Nature, Nature, vol. 543(7646), pages 529-532, March.
    4. Jihan Zhou & Yongsoo Yang & Yao Yang & Dennis S. Kim & Andrew Yuan & Xuezeng Tian & Colin Ophus & Fan Sun & Andreas K. Schmid & Michael Nathanson & Hendrik Heinz & Qi An & Hao Zeng & Peter Ercius & Ji, 2019. "Observing crystal nucleation in four dimensions using atomic electron tomography," Nature, Nature, vol. 570(7762), pages 500-503, June.
    5. Ruishi Qi & Ning Li & Jinlong Du & Ruochen Shi & Yang Huang & Xiaoxia Yang & Lei Liu & Zhi Xu & Qing Dai & Dapeng Yu & Peng Gao, 2021. "Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Hailing Jiang & Tao Wang & Zhenyu Zhang & Fang Liu & Ruochen Shi & Bowen Sheng & Shanshan Sheng & Weikun Ge & Ping Wang & Bo Shen & Bo Sun & Peng Gao & Lucas Lindsay & Xinqiang Wang, 2024. "Atomic-scale visualization of defect-induced localized vibrations in GaN," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Zhe Cheng & Ruiyang Li & Xingxu Yan & Glenn Jernigan & Jingjing Shi & Michael E. Liao & Nicholas J. Hines & Chaitanya A. Gadre & Juan Carlos Idrobo & Eungkyu Lee & Karl D. Hobart & Mark S. Goorsky & X, 2021. "Experimental observation of localized interfacial phonon modes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ning Li & Ruochen Shi & Yifei Li & Ruishi Qi & Fachen Liu & Xiaowen Zhang & Zhetong Liu & Yuehui Li & Xiangdong Guo & Kaihui Liu & Ying Jiang & Xin-Zheng Li & Ji Chen & Lei Liu & En-Ge Wang & Peng Gao, 2023. "Phonon transition across an isotopic interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Philipp M. Pelz & Sinéad M. Griffin & Scott Stonemeyer & Derek Popple & Hannah DeVyldere & Peter Ercius & Alex Zettl & Mary C. Scott & Colin Ophus, 2023. "Solving complex nanostructures with ptychographic atomic electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yao Zhang & Zezhou Li & Xing Tong & Zhiheng Xie & Siwei Huang & Yue-E Zhang & Hai-Bo Ke & Wei-Hua Wang & Jihan Zhou, 2024. "Three-dimensional atomic insights into the metal-oxide interface in Zr-ZrO2 nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xiao Han & Yanan Zhou & Xiaolin Tai & Geng Wu & Cai Chen & Xun Hong & Lei Tong & Fangfang Xu & Hai-Wei Liang & Yue Lin, 2024. "In-situ atomic tracking of intermetallic compound formation during thermal annealing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Hyesung Jo & Dae Han Wi & Taegu Lee & Yongmin Kwon & Chaehwa Jeong & Juhyeok Lee & Hionsuck Baik & Alexander J. Pattison & Wolfgang Theis & Colin Ophus & Peter Ercius & Yea-Lee Lee & Seunghwa Ryu & Sa, 2022. "Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Andreas Leitherer & Angelo Ziletti & Luca M. Ghiringhelli, 2021. "Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    13. Chaehwa Jeong & Juhyeok Lee & Hyesung Jo & Jaewhan Oh & Hionsuck Baik & Kyoung-June Go & Junwoo Son & Si-Young Choi & Sergey Prosandeev & Laurent Bellaiche & Yongsoo Yang, 2024. "Revealing the three-dimensional arrangement of polar topology in nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. R. Huber & F. Kern & D. D. Karnaushenko & E. Eisner & P. Lepucki & A. Thampi & A. Mirhajivarzaneh & C. Becker & T. Kang & S. Baunack & B. Büchner & D. Karnaushenko & O. G. Schmidt & A. Lubk, 2022. "Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Alejo, Anna & Jenkins, Robert & Reuge, Nicolas & Yao, Haogen, 2023. "Understanding and addressing the post-pandemic learning disparities," International Journal of Educational Development, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54921-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.