IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05392-1.html
   My bibliography  Save this article

Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces

Author

Listed:
  • Marcin Kisiel

    (University of Basel)

  • Oleg O. Brovko

    (The Abdus Salam International Centre for Theoretical Physics (ICTP))

  • Dilek Yildiz

    (University of Basel)

  • Rémy Pawlak

    (University of Basel)

  • Urs Gysin

    (University of Basel)

  • Erio Tosatti

    (The Abdus Salam International Centre for Theoretical Physics (ICTP)
    Scuola Internazionale Superiore di Studi Avanzati (SISSA), and CNR-IOM Democritos)

  • Ernst Meyer

    (University of Basel)

Abstract

Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillating laterally above the surface. Here, we report on the observation of dissipation peaks at selected voltage-dependent tip-surface distances for oxygen-deficient strontium titanate (SrTiO3) surface at low temperatures (T = 5 K). The observed dissipation peaks are attributed to tip-induced charge and spin state transitions in quantum-dot-like entities formed by single oxygen vacancies (and clusters thereof, possibly through a collective mechanism) at the SrTiO3 surface, which in view of technological and fundamental research relevance of the material opens important avenues for further studies and applications.

Suggested Citation

  • Marcin Kisiel & Oleg O. Brovko & Dilek Yildiz & Rémy Pawlak & Urs Gysin & Erio Tosatti & Ernst Meyer, 2018. "Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05392-1
    DOI: 10.1038/s41467-018-05392-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05392-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05392-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05392-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.