IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47610-z.html
   My bibliography  Save this article

Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature

Author

Listed:
  • Tingting Wu

    (Nanyang Technological University)

  • Chongwu Wang

    (Nanyang Technological University)

  • Guangwei Hu

    (Nanyang Technological University)

  • Zhixun Wang

    (Nanyang Technological University)

  • Jiaxin Zhao

    (Nanyang Technological University)

  • Zhe Wang

    (Nanyang Technological University)

  • Ksenia Chaykun

    (Nanyang Technological University)

  • Lin Liu

    (Nanyang Technological University)

  • Mengxiao Chen

    (Zhejiang University)

  • Dong Li

    (Nanyang Technological University)

  • Song Zhu

    (Nanyang Technological University)

  • Qihua Xiong

    (Tsinghua University)

  • Zexiang Shen

    (Nanyang Technological University)

  • Huajian Gao

    (Nanyang Technological University)

  • Francisco J. Garcia-Vidal

    (Universidad Autónoma de Madrid
    Technology and Research (A*STAR))

  • Lei Wei

    (Nanyang Technological University)

  • Qi Jie Wang

    (Nanyang Technological University
    Nanyang Technological University)

  • Yu Luo

    (Nanjing University of Aeronautics and Astronautics)

Abstract

Van der Waals semiconductors exemplified by two-dimensional transition-metal dichalcogenides have promised next-generation atomically thin optoelectronics. Boosting their interaction with light is vital for practical applications, especially in the quantum regime where ultrastrong coupling is highly demanded but not yet realized. Here we report ultrastrong exciton-plasmon coupling at room temperature in tungsten disulfide (WS2) layers loaded with a random multi-singular plasmonic metasurface deposited on a flexible polymer substrate. Different from seeking perfect metals or high-quality resonators, we create a unique type of metasurface with a dense array of singularities that can support nanometre-sized plasmonic hotspots to which several WS2 excitons coherently interact. The associated normalized coupling strength is 0.12 for monolayer WS2 and can be up to 0.164 for quadrilayers, showcasing the ultrastrong exciton-plasmon coupling that is important for practical optoelectronic devices based on low-dimensional semiconductors.

Suggested Citation

  • Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47610-z
    DOI: 10.1038/s41467-024-47610-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47610-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47610-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kotni Santhosh & Ora Bitton & Lev Chuntonov & Gilad Haran, 2016. "Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit," Nature Communications, Nature, vol. 7(1), pages 1-5, September.
    2. Haixu Leng & Brian Szychowski & Marie-Christine Daniel & Matthew Pelton, 2018. "Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Niclas S. Mueller & Yu Okamura & Bruno G. M. Vieira & Sabrina Juergensen & Holger Lange & Eduardo B. Barros & Florian Schulz & Stephanie Reich, 2020. "Deep strong light–matter coupling in plasmonic nanoparticle crystals," Nature, Nature, vol. 583(7818), pages 780-784, July.
    4. Yi-Shiou Duh & Yusuke Nagasaki & Yu-Lung Tang & Pang-Han Wu & Hao-Yu Cheng & Te-Hsin Yen & Hou-Xian Ding & Kentaro Nishida & Ikuto Hotta & Jhen-Hong Yang & Yu-Ping Lo & Kuo-Ping Chen & Katsumasa Fujit, 2020. "Giant photothermal nonlinearity in a single silicon nanostructure," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. A. Shalabney & J. George & J. Hutchison & G. Pupillo & C. Genet & T. W. Ebbesen, 2015. "Coherent coupling of molecular resonators with a microcavity mode," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    6. C. Diederichs & J. Tignon & G. Dasbach & C. Ciuti & A. Lemaître & J. Bloch & Ph. Roussignol & C. Delalande, 2006. "Parametric oscillation in vertical triple microcavities," Nature, Nature, vol. 440(7086), pages 904-907, April.
    7. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Yi-Shiou Duh & Yusuke Nagasaki & Yu-Lung Tang & Pang-Han Wu & Hao-Yu Cheng & Te-Hsin Yen & Hou-Xian Ding & Kentaro Nishida & Ikuto Hotta & Jhen-Hong Yang & Yu-Ping Lo & Kuo-Ping Chen & Katsumasa Fujit, 2020. "Publisher Correction: Giant photothermal nonlinearity in a single silicon nanostructure," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    9. Nils Lundt & Sebastian Klembt & Evgeniia Cherotchenko & Simon Betzold & Oliver Iff & Anton V. Nalitov & Martin Klaas & Christof P. Dietrich & Alexey V. Kavokin & Sven Höfling & Christian Schneider, 2016. "Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    10. Denis G. Baranov & Battulga Munkhbat & Elena Zhukova & Ankit Bisht & Adriana Canales & Benjamin Rousseaux & Göran Johansson & Tomasz J. Antosiewicz & Timur Shegai, 2020. "Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. Marie-Elena Kleemann & Rohit Chikkaraddy & Evgeny M. Alexeev & Dean Kos & Cloudy Carnegie & Will Deacon & Alex Casalis Pury & Christoph Große & Bart Nijs & Jan Mertens & Alexander I. Tartakovskii & Je, 2017. "Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    12. Rohit Chikkaraddy & Bart de Nijs & Felix Benz & Steven J. Barrow & Oren A. Scherman & Edina Rosta & Angela Demetriadou & Peter Fox & Ortwin Hess & Jeremy J. Baumberg, 2016. "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature, Nature, vol. 535(7610), pages 127-130, July.
    13. Ora Bitton & Satyendra Nath Gupta & Lothar Houben & Michal Kvapil & Vlastimil Křápek & Tomáš Šikola & Gilad Haran, 2020. "Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    14. S. Dufferwiel & S. Schwarz & F. Withers & A. A. P. Trichet & F. Li & M. Sich & O. Del Pozo-Zamudio & C. Clark & A. Nalitov & D. D. Solnyshkov & G. Malpuech & K. S. Novoselov & J. M. Smith & M. S. Skol, 2015. "Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    15. Long Zhang & Rahul Gogna & Will Burg & Emanuel Tutuc & Hui Deng, 2018. "Photonic-crystal exciton-polaritons in monolayer semiconductors," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Hu & Junyang Huang & Rakesh Arul & Ana Sánchez-Iglesias & Yuling Xiong & Luis M. Liz-Marzán & Jeremy J. Baumberg, 2024. "Robust consistent single quantum dot strong coupling in plasmonic nanocavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Renming Liu & Ming Geng & Jindong Ai & Xinyi Fan & Zhixiang Liu & Yu-Wei Lu & Yanmin Kuang & Jing-Feng Liu & Lijun Guo & Lin Wu, 2024. "Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xuecou Tu & Yichen Zhang & Shuyu Zhou & Wenjing Tang & Xu Yan & Yunjie Rui & Wohu Wang & Bingnan Yan & Chen Zhang & Ziyao Ye & Hongkai Shi & Runfeng Su & Chao Wan & Daxing Dong & Ruiying Xu & Qing-Yua, 2024. "Tamm-cavity terahertz detector," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Junze Zhou & P. A. D. Gonçalves & Fabrizio Riminucci & Scott Dhuey & Edward S. Barnard & Adam Schwartzberg & F. Javier García de Abajo & Alexander Weber-Bargioni, 2024. "Probing plexciton emission from 2D materials on gold nanotrenches," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yu-Lung Tang & Te-Hsin Yen & Kentaro Nishida & Chien-Hsuan Li & Yu-Chieh Chen & Tianyue Zhang & Chi-Kang Pai & Kuo-Ping Chen & Xiangping Li & Junichi Takahara & Shi-Wei Chu, 2023. "Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Zhengyi Lu & Jiamin Ji & Haiming Ye & Hao Zhang & Shunping Zhang & Hongxing Xu, 2024. "Quantifying the ultimate limit of plasmonic near-field enhancement," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Shima Rajabali & Sergej Markmann & Elsa Jöchl & Mattias Beck & Christian A. Lehner & Werner Wegscheider & Jérôme Faist & Giacomo Scalari, 2022. "An ultrastrongly coupled single terahertz meta-atom," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Huiqin Zhang & Bhaskar Abhiraman & Qing Zhang & Jinshui Miao & Kiyoung Jo & Stefano Roccasecca & Mark W. Knight & Artur R. Davoyan & Deep Jariwala, 2020. "Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    18. Jiaxin Zhao & Antonio Fieramosca & Ruiqi Bao & Kevin Dini & Rui Su & Daniele Sanvitto & Qihua Xiong & Timothy C. H. Liew, 2024. "Room temperature polariton spin switches based on Van der Waals superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Carlos Maciel-Escudero & Andrew B. Yankovich & Battulga Munkhbat & Denis G. Baranov & Rainer Hillenbrand & Eva Olsson & Javier Aizpurua & Timur O. Shegai, 2023. "Probing optical anapoles with fast electron beams," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47610-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.