IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39972-7.html
   My bibliography  Save this article

Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities

Author

Listed:
  • Longlong Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu Yuan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bowen Fu

    (Peking University)

  • Jingnan Yang

    (Peking University)

  • Danjie Dai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shushu Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sai Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xu Han

    (Beijing Institute of Technology)

  • Hancong Li

    (Peking University)

  • Zhanchun Zuo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Can Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Yuan Huang

    (Beijing Institute of Technology)

  • Kuijuan Jin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Qihuang Gong

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Xiulai Xu

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

Abstract

Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe2 monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.

Suggested Citation

  • Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39972-7
    DOI: 10.1038/s41467-023-39972-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39972-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39972-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Kindem & Andrei Ruskuc & John G. Bartholomew & Jake Rochman & Yan Qi Huan & Andrei Faraon, 2020. "Control and single-shot readout of an ion embedded in a nanophotonic cavity," Nature, Nature, vol. 580(7802), pages 201-204, April.
    2. Artur Branny & Santosh Kumar & Raphaël Proux & Brian D Gerardot, 2017. "Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    3. Liron Stern & Meir Grajower & Uriel Levy, 2014. "Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    4. Kamyar Parto & Shaimaa I. Azzam & Kaustav Banerjee & Galan Moody, 2021. "Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    6. Rohit Chikkaraddy & Bart de Nijs & Felix Benz & Steven J. Barrow & Oren A. Scherman & Edina Rosta & Angela Demetriadou & Peter Fox & Ortwin Hess & Jeremy J. Baumberg, 2016. "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature, Nature, vol. 535(7610), pages 127-130, July.
    7. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Mika A. Sillanpää & Jae I. Park & Raymond W. Simmonds, 2007. "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity," Nature, Nature, vol. 449(7161), pages 438-442, September.
    9. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Frédéric Peyskens & Chitraleema Chakraborty & Muhammad Muneeb & Dries Van Thourhout & Dirk Englund, 2019. "Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    11. W. B. Gao & P. Fallahi & E. Togan & J. Miguel-Sanchez & A. Imamoglu, 2012. "Observation of entanglement between a quantum dot spin and a single photon," Nature, Nature, vol. 491(7424), pages 426-430, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Sortino & Panaiot G. Zotev & Catherine L. Phillips & Alistair J. Brash & Javier Cambiasso & Elena Marensi & A. Mark Fox & Stefan A. Maier & Riccardo Sapienza & Alexander I. Tartakovskii, 2021. "Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Emanuil S. Yanev & Thomas P. Darlington & Sophia A. Ladyzhets & Matthew C. Strasbourg & Chiara Trovatello & Song Liu & Daniel A. Rhodes & Kobi Hall & Aditya Sinha & Nicholas J. Borys & James C. Hone &, 2024. "Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Gwangwoo Kim & Benjamin Huet & Christopher E. Stevens & Kiyoung Jo & Jeng-Yuan Tsai & Saiphaneendra Bachu & Meghan Leger & Seunguk Song & Mahfujur Rahaman & Kyung Yeol Ma & Nicholas R. Glavin & Hyeon , 2024. "Confinement of excited states in two-dimensional, in-plane, quantum heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Artem N. Abramov & Igor Y. Chestnov & Ekaterina S. Alimova & Tatiana Ivanova & Ivan S. Mukhin & Dmitry N. Krizhanovskii & Ivan A. Shelykh & Ivan V. Iorsh & Vasily Kravtsov, 2023. "Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Pablo Hernández López & Sebastian Heeg & Christoph Schattauer & Sviatoslav Kovalchuk & Abhijeet Kumar & Douglas J. Bock & Jan N. Kirchhof & Bianca Höfer & Kyrylo Greben & Denis Yagodkin & Lukas Linhar, 2022. "Strain control of hybridization between dark and localized excitons in a 2D semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2021. "Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    16. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Heng Wang & Yuying Zhu & Zhonghua Bai & Zechao Wang & Shuxu Hu & Hong-Yi Xie & Xiaopeng Hu & Jian Cui & Miaoling Huang & Jianhao Chen & Ying Ding & Lin Zhao & Xinyan Li & Qinghua Zhang & Lin Gu & X. J, 2023. "Prominent Josephson tunneling between twisted single copper oxide planes of Bi2Sr2-xLaxCuO6+y," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39972-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.