IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39972-7.html
   My bibliography  Save this article

Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities

Author

Listed:
  • Longlong Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu Yuan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bowen Fu

    (Peking University)

  • Jingnan Yang

    (Peking University)

  • Danjie Dai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shushu Shi

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sai Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xu Han

    (Beijing Institute of Technology)

  • Hancong Li

    (Peking University)

  • Zhanchun Zuo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Can Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Yuan Huang

    (Beijing Institute of Technology)

  • Kuijuan Jin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Qihuang Gong

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Xiulai Xu

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics)

Abstract

Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe2 monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.

Suggested Citation

  • Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39972-7
    DOI: 10.1038/s41467-023-39972-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39972-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39972-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mika A. Sillanpää & Jae I. Park & Raymond W. Simmonds, 2007. "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity," Nature, Nature, vol. 449(7161), pages 438-442, September.
    2. Jonathan M. Kindem & Andrei Ruskuc & John G. Bartholomew & Jake Rochman & Yan Qi Huan & Andrei Faraon, 2020. "Control and single-shot readout of an ion embedded in a nanophotonic cavity," Nature, Nature, vol. 580(7802), pages 201-204, April.
    3. Artur Branny & Santosh Kumar & Raphaël Proux & Brian D Gerardot, 2017. "Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    4. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Frédéric Peyskens & Chitraleema Chakraborty & Muhammad Muneeb & Dries Van Thourhout & Dirk Englund, 2019. "Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Liron Stern & Meir Grajower & Uriel Levy, 2014. "Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    7. W. B. Gao & P. Fallahi & E. Togan & J. Miguel-Sanchez & A. Imamoglu, 2012. "Observation of entanglement between a quantum dot spin and a single photon," Nature, Nature, vol. 491(7424), pages 426-430, November.
    8. Kamyar Parto & Shaimaa I. Azzam & Kaustav Banerjee & Galan Moody, 2021. "Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    10. Rohit Chikkaraddy & Bart de Nijs & Felix Benz & Steven J. Barrow & Oren A. Scherman & Edina Rosta & Angela Demetriadou & Peter Fox & Ortwin Hess & Jeremy J. Baumberg, 2016. "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature, Nature, vol. 535(7610), pages 127-130, July.
    11. Yuan Huang & Yu-Hao Pan & Rong Yang & Li-Hong Bao & Lei Meng & Hai-Lan Luo & Yong-Qing Cai & Guo-Dong Liu & Wen-Juan Zhao & Zhang Zhou & Liang-Mei Wu & Zhi-Li Zhu & Ming Huang & Li-Wei Liu & Lei Liu &, 2020. "Universal mechanical exfoliation of large-area 2D crystals," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Sortino & Panaiot G. Zotev & Catherine L. Phillips & Alistair J. Brash & Javier Cambiasso & Elena Marensi & A. Mark Fox & Stefan A. Maier & Riccardo Sapienza & Alexander I. Tartakovskii, 2021. "Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Emanuil S. Yanev & Thomas P. Darlington & Sophia A. Ladyzhets & Matthew C. Strasbourg & Chiara Trovatello & Song Liu & Daniel A. Rhodes & Kobi Hall & Aditya Sinha & Nicholas J. Borys & James C. Hone &, 2024. "Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Gwangwoo Kim & Benjamin Huet & Christopher E. Stevens & Kiyoung Jo & Jeng-Yuan Tsai & Saiphaneendra Bachu & Meghan Leger & Seunguk Song & Mahfujur Rahaman & Kyung Yeol Ma & Nicholas R. Glavin & Hyeon , 2024. "Confinement of excited states in two-dimensional, in-plane, quantum heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Artem N. Abramov & Igor Y. Chestnov & Ekaterina S. Alimova & Tatiana Ivanova & Ivan S. Mukhin & Dmitry N. Krizhanovskii & Ivan A. Shelykh & Ivan V. Iorsh & Vasily Kravtsov, 2023. "Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Pablo Hernández López & Sebastian Heeg & Christoph Schattauer & Sviatoslav Kovalchuk & Abhijeet Kumar & Douglas J. Bock & Jan N. Kirchhof & Bianca Höfer & Kyrylo Greben & Denis Yagodkin & Lukas Linhar, 2022. "Strain control of hybridization between dark and localized excitons in a 2D semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Huacong Sun & Qing Yang & Jianlin Wang & Mingchao Ding & Mouyang Cheng & Lei Liao & Chen Cai & Zitao Chen & Xudan Huang & Zibing Wang & Zhi Xu & Wenlong Wang & Kaihui Liu & Lei Liu & Xuedong Bai & Ji , 2024. "Unveiling sulfur vacancy pairs as bright and stable color centers in monolayer WS2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhengyi Lu & Jiamin Ji & Haiming Ye & Hao Zhang & Shunping Zhang & Hongxing Xu, 2024. "Quantifying the ultimate limit of plasmonic near-field enhancement," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Shima Rajabali & Sergej Markmann & Elsa Jöchl & Mattias Beck & Christian A. Lehner & Werner Wegscheider & Jérôme Faist & Giacomo Scalari, 2022. "An ultrastrongly coupled single terahertz meta-atom," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Cheng-Yi Zhu & Zimeng Zhang & Jing-Kai Qin & Zi Wang & Cong Wang & Peng Miao & Yingjie Liu & Pei-Yu Huang & Yao Zhang & Ke Xu & Liang Zhen & Yang Chai & Cheng-Yan Xu, 2023. "Two-dimensional semiconducting SnP2Se6 with giant second-harmonic-generation for monolithic on-chip electronic-photonic integration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39972-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.