IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44100-6.html
   My bibliography  Save this article

Hyperbolic exciton polaritons in a van der Waals magnet

Author

Listed:
  • Francesco L. Ruta

    (Columbia University
    Columbia University)

  • Shuai Zhang

    (Columbia University)

  • Yinming Shao

    (Columbia University)

  • Samuel L. Moore

    (Columbia University)

  • Swagata Acharya

    (National Renewable Energy Laboratory)

  • Zhiyuan Sun

    (Columbia University)

  • Siyuan Qiu

    (Columbia University)

  • Johannes Geurs

    (Columbia University
    Columbia University)

  • Brian S. Y. Kim

    (Columbia University
    Columbia University)

  • Matthew Fu

    (Columbia University)

  • Daniel G. Chica

    (Columbia University)

  • Dimitar Pashov

    (King’s College London)

  • Xiaodong Xu

    (University of Washington
    University of Washington)

  • Di Xiao

    (University of Washington
    University of Washington)

  • Milan Delor

    (Columbia University)

  • X-Y. Zhu

    (Columbia University)

  • Andrew J. Millis

    (Columbia University
    Flatiron Institute)

  • Xavier Roy

    (Columbia University)

  • James C. Hone

    (Columbia University)

  • Cory R. Dean

    (Columbia University)

  • Mikhail I. Katsnelson

    (Radboud University)

  • Mark Schilfgaarde

    (National Renewable Energy Laboratory)

  • D. N. Basov

    (Columbia University)

Abstract

Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

Suggested Citation

  • Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44100-6
    DOI: 10.1038/s41467-023-44100-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44100-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44100-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Kasprzak & M. Richard & S. Kundermann & A. Baas & P. Jeambrun & J. M. J. Keeling & F. M. Marchetti & M. H. Szymańska & R. André & J. L. Staehli & V. Savona & P. B. Littlewood & B. Deveaud & Le Si D, 2006. "Bose–Einstein condensation of exciton polaritons," Nature, Nature, vol. 443(7110), pages 409-414, September.
    2. Florian Dirnberger & Jiamin Quan & Rezlind Bushati & Geoffrey M. Diederich & Matthias Florian & Julian Klein & Kseniia Mosina & Zdenek Sofer & Xiaodong Xu & Akashdeep Kamra & Francisco J. García-Vidal, 2023. "Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons," Nature, Nature, vol. 620(7974), pages 533-537, August.
    3. Fanjie Wang & Chong Wang & Andrey Chaves & Chaoyu Song & Guowei Zhang & Shenyang Huang & Yuchen Lei & Qiaoxia Xing & Lei Mu & Yuangang Xie & Hugen Yan, 2021. "Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Swagata Acharya & Dimitar Pashov & Cedric Weber & Mark Schilfgaarde & Alexander I. Lichtenstein & Mikhail I. Katsnelson, 2023. "A theory for colors of strongly correlated electronic systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Youn Jue Bae & Jue Wang & Allen Scheie & Junwen Xu & Daniel G. Chica & Geoffrey M. Diederich & John Cenker & Michael E. Ziebel & Yusong Bai & Haowen Ren & Cory R. Dean & Milan Delor & Xiaodong Xu & Xa, 2022. "Exciton-coupled coherent magnons in a 2D semiconductor," Nature, Nature, vol. 609(7926), pages 282-286, September.
    7. Aaron J. Sternbach & Simone Latini & Sanghoon Chae & Hannes Hübener & Umberto Giovannini & Yinming Shao & Lin Xiong & Zhiyuan Sun & Norman Shi & Peter Kissin & Guang-Xin Ni & Daniel Rhodes & Brian Kim, 2020. "Femtosecond exciton dynamics in WSe2 optical waveguides," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    8. S. Dufferwiel & S. Schwarz & F. Withers & A. A. P. Trichet & F. Li & M. Sich & O. Del Pozo-Zamudio & C. Clark & A. Nalitov & D. D. Solnyshkov & G. Malpuech & K. S. Novoselov & J. M. Smith & M. S. Skol, 2015. "Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    9. Weiliang Ma & Pablo Alonso-González & Shaojuan Li & Alexey Y. Nikitin & Jian Yuan & Javier Martín-Sánchez & Javier Taboada-Gutiérrez & Iban Amenabar & Peining Li & Saül Vélez & Christopher Tollan & Zh, 2018. "In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal," Nature, Nature, vol. 562(7728), pages 557-562, October.
    10. Long Zhang & Rahul Gogna & Will Burg & Emanuel Tutuc & Hui Deng, 2018. "Photonic-crystal exciton-polaritons in monolayer semiconductors," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    11. S. Klembt & T. H. Harder & O. A. Egorov & K. Winkler & R. Ge & M. A. Bandres & M. Emmerling & L. Worschech & T. C. H. Liew & M. Segev & C. Schneider & S. Höfling, 2018. "Exciton-polariton topological insulator," Nature, Nature, vol. 562(7728), pages 552-556, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farsane Tabataba-Vakili & Huy P. G. Nguyen & Anna Rupp & Kseniia Mosina & Anastasios Papavasileiou & Kenji Watanabe & Takashi Taniguchi & Patrick Maletinsky & Mikhail M. Glazov & Zdenek Sofer & Anvar , 2024. "Doping-control of excitons and magnetism in few-layer CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Rao Fu & Yusong Qu & Mengfei Xue & Xinghui Liu & Shengyao Chen & Yongqian Zhao & Runkun Chen & Boxuan Li & Hongming Weng & Qian Liu & Qing Dai & Jianing Chen, 2024. "Manipulating hyperbolic transient plasmons in a layered semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Xuecou Tu & Yichen Zhang & Shuyu Zhou & Wenjing Tang & Xu Yan & Yunjie Rui & Wohu Wang & Bingnan Yan & Chen Zhang & Ziyao Ye & Hongkai Shi & Runfeng Su & Chao Wan & Daxing Dong & Ruiying Xu & Qing-Yua, 2024. "Tamm-cavity terahertz detector," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Lukas Conrads & Luis Schüler & Konstantin G. Wirth & Matthias Wuttig & Thomas Taubner, 2024. "Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Huiqin Zhang & Bhaskar Abhiraman & Qing Zhang & Jinshui Miao & Kiyoung Jo & Stefano Roccasecca & Mark W. Knight & Artur R. Davoyan & Deep Jariwala, 2020. "Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    16. Ana I. F. Tresguerres-Mata & Christian Lanza & Javier Taboada-Gutiérrez & Joseph. R. Matson & Gonzalo Álvarez-Pérez & Masahiko Isobe & Aitana Tarazaga Martín-Luengo & Jiahua Duan & Stefan Partel & Mar, 2024. "Observation of naturally canalized phonon polaritons in LiV2O5 thin layers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Jiaxin Zhao & Antonio Fieramosca & Ruiqi Bao & Kevin Dini & Rui Su & Daniele Sanvitto & Qihua Xiong & Timothy C. H. Liew, 2024. "Room temperature polariton spin switches based on Van der Waals superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Neda Alsadat Aghamiri & Guangwei Hu & Alireza Fali & Zhen Zhang & Jiahan Li & Sivacarendran Balendhran & Sumeet Walia & Sharath Sriram & James H. Edgar & Shriram Ramanathan & Andrea Alù & Yohannes Aba, 2022. "Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Chenli Huang & Rong Sun & Lipiao Bao & Xinyue Tian & Changwang Pan & Mengyang Li & Wangqiang Shen & Kun Guo & Bingwu Wang & Xing Lu & Song Gao, 2023. "A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44100-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.