IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26060-x.html
   My bibliography  Save this article

Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime

Author

Listed:
  • María Barra-Burillo

    (CIC nanoGUNE BRTA)

  • Unai Muniain

    (Donostia International Physics Center)

  • Sara Catalano

    (CIC nanoGUNE BRTA)

  • Marta Autore

    (CIC nanoGUNE BRTA)

  • Fèlix Casanova

    (CIC nanoGUNE BRTA
    IKERBASQUE, Basque Foundation for Science)

  • Luis E. Hueso

    (CIC nanoGUNE BRTA
    IKERBASQUE, Basque Foundation for Science)

  • Javier Aizpurua

    (Donostia International Physics Center
    Materials Physics Center, CSIC-UPV/EHU)

  • Ruben Esteban

    (Donostia International Physics Center
    Materials Physics Center, CSIC-UPV/EHU)

  • Rainer Hillenbrand

    (IKERBASQUE, Basque Foundation for Science
    CIC nanoGUNE BRTA and Department of Electricity and Electronics, EHU/UPV)

Abstract

Strong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity. Remarkably, strong coupling is achieved for hBN layers as thin as 10 nm. Further, the ultrastrong coupling in fully filled cavities yields a polariton dispersion matching that of phonon polaritons in bulk hBN, highlighting that the maximum light-matter coupling in microcavities is limited to the coupling strength between photons and the bulk material. Tunable cavity phonon polaritons could become a versatile platform for studying how the coupling strength between photons and phonons may modify the properties of polar crystals.

Suggested Citation

  • María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26060-x
    DOI: 10.1038/s41467-021-26060-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26060-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26060-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sina Abedini Dereshgi & Thomas G. Folland & Akshay A. Murthy & Xianglian Song & Ibrahim Tanriover & Vinayak P. Dravid & Joshua D. Caldwell & Koray Aydin, 2020. "Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Niclas S. Mueller & Yu Okamura & Bruno G. M. Vieira & Sabrina Juergensen & Holger Lange & Eduardo B. Barros & Florian Schulz & Stephanie Reich, 2020. "Deep strong light–matter coupling in plasmonic nanoparticle crystals," Nature, Nature, vol. 583(7818), pages 780-784, July.
    3. D. G. Lidzey & D. D. C. Bradley & M. S. Skolnick & T. Virgili & S. Walker & D. M. Whittaker, 1998. "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, Nature, vol. 395(6697), pages 53-55, September.
    4. J. Kasprzak & M. Richard & S. Kundermann & A. Baas & P. Jeambrun & J. M. J. Keeling & F. M. Marchetti & M. H. Szymańska & R. André & J. L. Staehli & V. Savona & P. B. Littlewood & B. Deveaud & Le Si D, 2006. "Bose–Einstein condensation of exciton polaritons," Nature, Nature, vol. 443(7110), pages 409-414, September.
    5. Jan Klaers & Julian Schmitt & Frank Vewinger & Martin Weitz, 2010. "Bose–Einstein condensation of photons in an optical microcavity," Nature, Nature, vol. 468(7323), pages 545-548, November.
    6. Joshua D. Caldwell & Andrey V. Kretinin & Yiguo Chen & Vincenzo Giannini & Michael M. Fogler & Yan Francescato & Chase T. Ellis & Joseph G. Tischler & Colin R. Woods & Alexander J. Giles & Minghui Hon, 2014. "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    7. P. Pons-Valencia & F. J. Alfaro-Mozaz & M. M. Wiecha & V. Biolek & I. Dolado & S. Vélez & P. Li & P. Alonso-González & F. Casanova & L. E. Hueso & L. Martín-Moreno & R. Hillenbrand & A. Y. Nikitin, 2019. "Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    8. F. J. Alfaro-Mozaz & P. Alonso-González & S. Vélez & I. Dolado & M. Autore & S. Mastel & F. Casanova & L. E. Hueso & P. Li & A. Y. Nikitin & R. Hillenbrand, 2017. "Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Jiade Li & Li Wang & Yani Wang & Zhiyu Tao & Weiliang Zhong & Zhibin Su & Siwei Xue & Guangyao Miao & Weihua Wang & Hailin Peng & Jiandong Guo & Xuetao Zhu, 2024. "Observation of the nonanalytic behavior of optical phonons in monolayer hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Irene Dolado & Carlos Maciel-Escudero & Elizaveta Nikulina & Evgenii Modin & Francesco Calavalle & Shu Chen & Andrei Bylinkin & Francisco Javier Alfaro-Mozaz & Jiahan Li & James H. Edgar & Fèlix Casan, 2022. "Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Neda Alsadat Aghamiri & Guangwei Hu & Alireza Fali & Zhen Zhang & Jiahan Li & Sivacarendran Balendhran & Sumeet Walia & Sharath Sriram & James H. Edgar & Shriram Ramanathan & Andrea Alù & Yohannes Aba, 2022. "Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Fenghao Sun & Qiwen Qu & Hui Li & Shicheng Jiang & Qingcao Liu & Shuai Ben & Yu Pei & Jiaying Liang & Jiawei Wang & Shanshan Song & Jian Gao & Weifeng Yang & Hongxing Xu & Jian Wu, 2024. "All-optical steering on the proton emission in laser-induced nanoplasmas," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Alexander Sazhin & Vladimir N. Gladilin & Andris Erglis & Göran Hellmann & Frank Vewinger & Martin Weitz & Michiel Wouters & Julian Schmitt, 2024. "Observation of nonlinear response and Onsager regression in a photon Bose-Einstein condensate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Mingze He & Joseph R. Matson & Mingyu Yu & Angela Cleri & Sai S. Sunku & Eli Janzen & Stefan Mastel & Thomas G. Folland & James H. Edgar & D. N. Basov & Jon-Paul Maria & Stephanie Law & Joshua D. Cald, 2023. "Polariton design and modulation via van der Waals/doped semiconductor heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yusuke Morita & Kosuke Yoshioka & Makoto Kuwata-Gonokami, 2022. "Observation of Bose-Einstein condensates of excitons in a bulk semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yao Li & Xuekai Ma & Xiaokun Zhai & Meini Gao & Haitao Dai & Stefan Schumacher & Tingge Gao, 2022. "Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    20. Yehonatan Gelkop & Fabrizio Mei & Sagi Frishman & Yehudit Garcia & Ludovica Falsi & Galina Perepelitsa & Claudio Conti & Eugenio DelRe & Aharon J. Agranat, 2021. "Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26060-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.