IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48764-6.html
   My bibliography  Save this article

Hybrid architectures for terahertz molecular polaritonics

Author

Listed:
  • Ahmed Jaber

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics)

  • Michael Reitz

    (Max Planck Centre for Extreme and Quantum Photonics
    Max Planck Institute for the Science of Light
    Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Avinash Singh

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics)

  • Ali Maleki

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics)

  • Yongbao Xin

    (Iridian Spectral Technologies Ltd.)

  • Brian T. Sullivan

    (Iridian Spectral Technologies Ltd.)

  • Ksenia Dolgaleva

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics
    University of Ottawa)

  • Robert W. Boyd

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics
    University of Ottawa
    University of Rochester)

  • Claudiu Genes

    (Max Planck Centre for Extreme and Quantum Photonics
    Max Planck Institute for the Science of Light
    Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Jean-Michel Ménard

    (University of Ottawa
    Max Planck Centre for Extreme and Quantum Photonics
    University of Ottawa)

Abstract

Atoms and their different arrangements into molecules are nature’s building blocks. In a regime of strong coupling, matter hybridizes with light to modify physical and chemical properties, hence creating new building blocks that can be used for avant-garde technologies. However, this regime relies on the strong confinement of the optical field, which is technically challenging to achieve, especially at terahertz frequencies in the far-infrared region. Here we demonstrate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized terahertz photonic mode to molecular vibrations. We observe an enhanced vacuum Rabi splitting of 200 GHz from a hybrid cavity architecture consisting of a plasmonic metasurface, coupled to glucose, and interfaced with a planar mirror. This enhanced light-matter interaction is found to emerge from the modified intracavity field of the cavity, leading to an enhanced zero-point electric field amplitude. Our study provides key insight into the design of polaritonic platforms with organic molecules to harvest the unique properties of hybrid light-matter states.

Suggested Citation

  • Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48764-6
    DOI: 10.1038/s41467-024-48764-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48764-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48764-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Benz & S. Campione & S. Liu & I. Montaño & J.F. Klem & A Allerman & J.R. Wendt & M.B. Sinclair & F. Capolino & I. Brener, 2013. "Strong coupling in the sub-wavelength limit using metamaterial nanocavities," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    2. Jun Rui & David Wei & Antonio Rubio-Abadal & Simon Hollerith & Johannes Zeiher & Dan M. Stamper-Kurn & Christian Gross & Immanuel Bloch, 2020. "A subradiant optical mirror formed by a single structured atomic layer," Nature, Nature, vol. 583(7816), pages 369-374, July.
    3. D. G. Lidzey & D. D. C. Bradley & M. S. Skolnick & T. Virgili & S. Walker & D. M. Whittaker, 1998. "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, Nature, vol. 395(6697), pages 53-55, September.
    4. A. Shalabney & J. George & J. Hutchison & G. Pupillo & C. Genet & T. W. Ebbesen, 2015. "Coherent coupling of molecular resonators with a microcavity mode," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    5. Denis G. Baranov & Battulga Munkhbat & Elena Zhukova & Ankit Bisht & Adriana Canales & Benjamin Rousseaux & Göran Johansson & Tomasz J. Antosiewicz & Timur Shegai, 2020. "Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Ran Damari & Omri Weinberg & Daniel Krotkov & Natalia Demina & Katherine Akulov & Adina Golombek & Tal Schwartz & Sharly Fleischer, 2019. "Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sindhana Pannir-Sivajothi & Jorge A. Campos-Gonzalez-Angulo & Luis A. Martínez-Martínez & Shubham Sinha & Joel Yuen-Zhou, 2022. "Driving chemical reactions with polariton condensates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Connor K. Terry Weatherly & Justin Provazza & Emily A. Weiss & Roel Tempelaar, 2023. "Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Renming Liu & Ming Geng & Jindong Ai & Xinyi Fan & Zhixiang Liu & Yu-Wei Lu & Yanmin Kuang & Jing-Feng Liu & Lijun Guo & Lin Wu, 2024. "Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Philip A. Thomas & Kishan S. Menghrajani & William L. Barnes, 2022. "All-optical control of phase singularities using strong light-matter coupling," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. David Allemeier & Benjamin Isenhart & Ekraj Dahal & Yuki Tsuda & Tsukasa Yoshida & Matthew S. White, 2021. "Emergence and control of photonic band structure in stacked OLED microcavities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Irene Dolado & Carlos Maciel-Escudero & Elizaveta Nikulina & Evgenii Modin & Francesco Calavalle & Shu Chen & Andrei Bylinkin & Francisco Javier Alfaro-Mozaz & Jiahan Li & James H. Edgar & Fèlix Casan, 2022. "Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yuqiang Wang & Yu Zhang & Chaozhong Li & Jinwu Wei & Bin He & Hongjun Xu & Jihao Xia & Xuming Luo & Jiahui Li & Jing Dong & Wenqing He & Zhengren Yan & Wenlong Yang & Fusheng Ma & Guozhi Chai & Peng Y, 2024. "Ultrastrong to nearly deep-strong magnon-magnon coupling with a high degree of freedom in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Raj Pandya & Richard Y. S. Chen & Qifei Gu & Jooyoung Sung & Christoph Schnedermann & Oluwafemi S. Ojambati & Rohit Chikkaraddy & Jeffrey Gorman & Gianni Jacucci & Olimpia D. Onelli & Tom Willhammar &, 2021. "Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Yi-Cheng Wang & Jhih-Shih You & H. H. Jen, 2022. "A non-Hermitian optical atomic mirror," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48764-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.