IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49759-z.html
   My bibliography  Save this article

Tamm-cavity terahertz detector

Author

Listed:
  • Xuecou Tu

    (Nanjing University
    Hefei National Laboratory)

  • Yichen Zhang

    (Nanjing University)

  • Shuyu Zhou

    (Nanjing University)

  • Wenjing Tang

    (Nanjing University)

  • Xu Yan

    (Nanjing University)

  • Yunjie Rui

    (Nanjing University)

  • Wohu Wang

    (Nanjing University)

  • Bingnan Yan

    (Nanjing University)

  • Chen Zhang

    (Nanjing University)

  • Ziyao Ye

    (Nanjing University)

  • Hongkai Shi

    (Nanjing University)

  • Runfeng Su

    (Nanjing University)

  • Chao Wan

    (Purple Mountain Laboratories)

  • Daxing Dong

    (Nanjing University of Aeronautics and Astronautics)

  • Ruiying Xu

    (Nanjing Electronic Devices Institute)

  • Qing-Yuan Zhao

    (Nanjing University
    Purple Mountain Laboratories)

  • La-Bao Zhang

    (Nanjing University
    Hefei National Laboratory)

  • Xiao-Qing Jia

    (Nanjing University
    Hefei National Laboratory)

  • Huabing Wang

    (Nanjing University
    Purple Mountain Laboratories)

  • Lin Kang

    (Nanjing University
    Hefei National Laboratory)

  • Jian Chen

    (Nanjing University
    Purple Mountain Laboratories)

  • Peiheng Wu

    (Nanjing University
    Hefei National Laboratory)

Abstract

Efficiently fabricating a cavity that can achieve strong interactions between terahertz waves and matter would allow researchers to exploit the intrinsic properties due to the long wavelength in the terahertz waveband. Here we show a terahertz detector embedded in a Tamm cavity with a record Q value of 1017 and a bandwidth of only 469 MHz for direct detection. The Tamm-cavity detector is formed by embedding a substrate with an Nb5N6 microbolometer detector between an Si/air distributed Bragg reflector (DBR) and a metal reflector. The resonant frequency can be controlled by adjusting the thickness of the substrate layer. The detector and DBR are fabricated separately, and a large pixel-array detector can be realized by a very simple assembly process. This versatile cavity structure can be used as a platform for preparing high-performance terahertz devices and opening up the study of the strong interactions between terahertz waves and matter.

Suggested Citation

  • Xuecou Tu & Yichen Zhang & Shuyu Zhou & Wenjing Tang & Xu Yan & Yunjie Rui & Wohu Wang & Bingnan Yan & Chen Zhang & Ziyao Ye & Hongkai Shi & Runfeng Su & Chao Wan & Daxing Dong & Ruiying Xu & Qing-Yua, 2024. "Tamm-cavity terahertz detector," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49759-z
    DOI: 10.1038/s41467-024-49759-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49759-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49759-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Ma & Rabi Shrestha & Jacob Adelberg & Chia-Yi Yeh & Zahed Hossain & Edward Knightly & Josep Miquel Jornet & Daniel M. Mittleman, 2018. "Security and eavesdropping in terahertz wireless links," Nature, Nature, vol. 563(7729), pages 89-93, November.
    2. Nils Lundt & Sebastian Klembt & Evgeniia Cherotchenko & Simon Betzold & Oliver Iff & Anton V. Nalitov & Martin Klaas & Christof P. Dietrich & Alexey V. Kavokin & Sven Höfling & Christian Schneider, 2016. "Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    3. Rayko Ivanov Stantchev & Xiao Yu & Thierry Blu & Emma Pickwell-MacPherson, 2020. "Real-time terahertz imaging with a single-pixel detector," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Christian Schneider & Mikhail M. Glazov & Tobias Korn & Sven Höfling & Bernhard Urbaszek, 2018. "Two-dimensional semiconductors in the regime of strong light-matter coupling," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Ali Sobhani & Mark W. Knight & Yumin Wang & Bob Zheng & Nicholas S. King & Lisa V. Brown & Zheyu Fang & Peter Nordlander & Naomi J. Halas, 2013. "Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    6. S. Dufferwiel & S. Schwarz & F. Withers & A. A. P. Trichet & F. Li & M. Sich & O. Del Pozo-Zamudio & C. Clark & A. Nalitov & D. D. Solnyshkov & G. Malpuech & K. S. Novoselov & J. M. Smith & M. S. Skol, 2015. "Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    7. Simone Biasco & Katia Garrasi & Fabrizio Castellano & Lianhe Li & Harvey E. Beere & David A. Ritchie & Edmund H. Linfield & A. Giles Davies & Miriam S. Vitiello, 2018. "Continuous-wave highly-efficient low-divergence terahertz wire lasers," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Rüdeger Köhler & Alessandro Tredicucci & Fabio Beltram & Harvey E. Beere & Edmund H. Linfield & A. Giles Davies & David A. Ritchie & Rita C. Iotti & Fausto Rossi, 2002. "Terahertz semiconductor-heterostructure laser," Nature, Nature, vol. 417(6885), pages 156-159, May.
    9. T. Yoshie & A. Scherer & J. Hendrickson & G. Khitrova & H. M. Gibbs & G. Rupper & C. Ell & O. B. Shchekin & D. G. Deppe, 2004. "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature, Nature, vol. 432(7014), pages 200-203, November.
    10. Denis A. Bandurin & Dmitry Svintsov & Igor Gayduchenko & Shuigang G. Xu & Alessandro Principi & Maxim Moskotin & Ivan Tretyakov & Denis Yagodkin & Sergey Zhukov & Takashi Taniguchi & Kenji Watanabe & , 2018. "Resonant terahertz detection using graphene plasmons," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Josep M. Jornet & Edward W. Knightly & Daniel M. Mittleman, 2023. "Wireless communications sensing and security above 100 GHz," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Hangyong Shan & Ivan Iorsh & Bo Han & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Takashi Taniguchi & Sebastian Klembt & Sven Höfling & S, 2022. "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Xuan Trung Nguyen & Katrin Winte & Daniel Timmer & Yevgeny Rakita & Davide Raffaele Ceratti & Sigalit Aharon & Muhammad Sufyan Ramzan & Caterina Cocchi & Michael Lorke & Frank Jahnke & David Cahen & C, 2023. "Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Muhammad Mirza & Rehman Muqadass & Abdul Rahman Chaudhary & Ahmad Bazmi Nisar, 2016. "Public awareness about e-tagging device on security Check posts & toll-plazas for the smooth traffic management and reduction in terrorist activities in Pakistan," Post-Print halshs-01355911, HAL.
    12. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Patrick Kilcullen & Tsuneyuki Ozaki & Jinyang Liang, 2022. "Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Junliang Dong & Alessandro Tomasino & Giacomo Balistreri & Pei You & Anton Vorobiov & Étienne Charette & Boris Le Drogoff & Mohamed Chaker & Aycan Yurtsever & Salvatore Stivala & Maria A. Vincenti & C, 2022. "Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Guifeng Liu, 2013. "Visualization of patents and papers in terahertz technology: a comparative study," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1037-1056, March.
    16. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Takashi Arikawa & Jaeyong Kim & Toshikazu Mukai & Naoki Nishigami & Masayuki Fujita & Tadao Nagatsuma & Koichiro Tanaka, 2024. "Phase-resolved measurement and control of ultrafast dynamics in terahertz electronic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Kun Peng & Nicholas Paul Morgan & Ford M. Wagner & Thomas Siday & Chelsea Qiushi Xia & Didem Dede & Victor Boureau & Valerio Piazza & Anna Fontcuberta i Morral & Michael B. Johnston, 2024. "Direct and integrating sampling in terahertz receivers from wafer-scalable InAs nanowires," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Seong Won Lee & Jong Seok Lee & Woo Hun Choi & Daegwang Choi & Su-Hyun Gong, 2024. "Ultra-compact exciton polariton modulator based on van der Waals semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Junliang Dong & Pei You & Alessandro Tomasino & Aycan Yurtsever & Roberto Morandotti, 2023. "Single-shot ultrafast terahertz photography," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49759-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.