IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46537-9.html
   My bibliography  Save this article

Broadband angular spectrum differentiation using dielectric metasurfaces

Author

Listed:
  • Ming Deng

    (Huazhong University of Science and Technology)

  • Michele Cotrufo

    (City University of New York
    University of Rochester)

  • Jian Wang

    (Huazhong University of Science and Technology)

  • Jianji Dong

    (Huazhong University of Science and Technology)

  • Zhichao Ruan

    (Zhejiang University)

  • Andrea Alù

    (City University of New York)

  • Lin Chen

    (Huazhong University of Science and Technology
    Shenzhen Huazhong University of Science and Technology Research Institute)

Abstract

Signal processing is of critical importance for various science and technology fields. Analog optical processing can provide an effective solution to perform large-scale and real-time data processing, superior to its digital counterparts, which have the disadvantages of low operation speed and large energy consumption. As an important branch of modern optics, Fourier optics exhibits great potential for analog optical image processing, for instance for edge detection. While these operations have been commonly explored to manipulate the spatial content of an image, mathematical operations that act directly over the angular spectrum of an image have not been pursued. Here, we demonstrate manipulation of the angular spectrum of an image, and in particular its differentiation, using dielectric metasurfaces operating across the whole visible spectrum. We experimentally show that this technique can be used to enhance desired portions of the angular spectrum of an image. Our approach can be extended to develop more general angular spectrum analog meta-processors, and may open opportunities for optical analog data processing and biological imaging.

Suggested Citation

  • Ming Deng & Michele Cotrufo & Jian Wang & Jianji Dong & Zhichao Ruan & Andrea Alù & Lin Chen, 2024. "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46537-9
    DOI: 10.1038/s41467-024-46537-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46537-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46537-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tengfeng Zhu & Yihan Zhou & Yijie Lou & Hui Ye & Min Qiu & Zhichao Ruan & Shanhui Fan, 2017. "Plasmonic computing of spatial differentiation," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    2. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    3. Xingyuan Xu & Mengxi Tan & Bill Corcoran & Jiayang Wu & Andreas Boes & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Damien G. Hicks & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2021. "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Nature, vol. 589(7840), pages 44-51, January.
    4. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    5. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Yiwei Li & Ning An & Zheyi Lu & Yuchen Wang & Bing Chang & Teng Tan & Xuhan Guo & Xizhen Xu & Jun He & Handing Xia & Zhaohui Wu & Yikai Su & Yuan Liu & Yunjiang Rao & Giancarlo Soavi & Baicheng Yao, 2022. "Nonlinear co-generation of graphene plasmons for optoelectronic logic operations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Cansu Demirkiran & Lakshmi Nair & Darius Bunandar & Ajay Joshi, 2024. "A blueprint for precise and fault-tolerant analog neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Yang He & Raymond Lopez-Rios & Usman A. Javid & Jingwei Ling & Mingxiao Li & Shixin Xue & Kerry Vahala & Qiang Lin, 2023. "High-speed tunable microwave-rate soliton microcomb," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46537-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.