IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37606-6.html
   My bibliography  Save this article

Single-shot isotropic differential interference contrast microscopy

Author

Listed:
  • Xinwei Wang

    (Harbin Institute of Technology
    50 Nanyang Avenue, Nanyang Technological University)

  • Hao Wang

    (Singapore University of Technology and Design)

  • Jinlu Wang

    (Harbin Medical University Cancer Hospital, Harbin Medical University)

  • Xingsi Liu

    (National University of Singapore)

  • Huijie Hao

    (Harbin Institute of Technology)

  • You Sin Tan

    (Singapore University of Technology and Design)

  • Yilei Zhang

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • He Zhang

    (Harbin Institute of Technology)

  • Xiangyan Ding

    (Harbin Institute of Technology)

  • Weisong Zhao

    (Harbin Institute of Technology)

  • Yuhang Wang

    (Northeast Forestry University)

  • Zhengang Lu

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Jian Liu

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Joel K. W. Yang

    (Singapore University of Technology and Design
    Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research))

  • Jiubin Tan

    (Harbin Institute of Technology
    Harbin Institute of Technology
    Ministry of Industry and Information Technology)

  • Haoyu Li

    (Harbin Institute of Technology)

  • Cheng-Wei Qiu

    (National University of Singapore)

  • Guangwei Hu

    (50 Nanyang Avenue, Nanyang Technological University)

  • Xumin Ding

    (Harbin Institute of Technology
    Ministry of Industry and Information Technology)

Abstract

Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.

Suggested Citation

  • Xinwei Wang & Hao Wang & Jinlu Wang & Xingsi Liu & Huijie Hao & You Sin Tan & Yilei Zhang & He Zhang & Xiangyan Ding & Weisong Zhao & Yuhang Wang & Zhengang Lu & Jian Liu & Joel K. W. Yang & Jiubin Ta, 2023. "Single-shot isotropic differential interference contrast microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37606-6
    DOI: 10.1038/s41467-023-37606-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37606-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37606-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mikhail E. Kandel & Chenfei Hu & Ghazal Naseri Kouzehgarani & Eunjung Min & Kathryn Michele Sullivan & Hyunjoon Kong & Jennifer M. Li & Drew N. Robson & Martha U. Gillette & Catherine Best-Popescu & G, 2019. "Epi-illumination gradient light interference microscopy for imaging opaque structures," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Tengfeng Zhu & Yihan Zhou & Yijie Lou & Hui Ye & Min Qiu & Zhichao Ruan & Shanhui Fan, 2017. "Plasmonic computing of spatial differentiation," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    4. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Publisher Correction: Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    5. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Atsushi Tamada & Michihiro Igarashi, 2017. "Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    7. Tan H. Nguyen & Mikhail E. Kandel & Marcello Rubessa & Matthew B. Wheeler & Gabriel Popescu, 2017. "Gradient light interference microscopy for 3D imaging of unlabeled specimens," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yang Liu & Mingchuan Huang & Qiankun Chen & Douguo Zhang, 2022. "Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ibrahim Tanriover & Sina Abedini Dereshgi & Koray Aydin, 2023. "Metasurface enabled broadband all optical edge detection in visible frequencies," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Ming Deng & Michele Cotrufo & Jian Wang & Jianji Dong & Zhichao Ruan & Andrea Alù & Lin Chen, 2024. "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Chenfei Hu & Shenghua He & Young Jae Lee & Yuchen He & Edward M. Kong & Hua Li & Mark A. Anastasio & Gabriel Popescu, 2022. "Live-dead assay on unlabeled cells using phase imaging with computational specificity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Dehui Zhang & Dong Xu & Yuhang Li & Yi Luo & Jingtian Hu & Jingxuan Zhou & Yucheng Zhang & Boxuan Zhou & Peiqi Wang & Xurong Li & Bijie Bai & Huaying Ren & Laiyuan Wang & Ao Zhang & Mona Jarrahi & Yu , 2024. "Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Felix Jünger & Dominic Ruh & Dominik Strobel & Rebecca Michiels & Dominik Huber & Annette Brandel & Josef Madl & Alina Gavrilov & Michael Mihlan & Caterina Cora Daller & Eva A. Rog-Zielinska & Winfrie, 2022. "100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Michelle Küppers & David Albrecht & Anna D. Kashkanova & Jennifer Lühr & Vahid Sandoghdar, 2023. "Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Chao Qian & Zhedong Wang & Haoliang Qian & Tong Cai & Bin Zheng & Xiao Lin & Yichen Shen & Ido Kaminer & Erping Li & Hongsheng Chen, 2022. "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37606-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.