IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15391.html
   My bibliography  Save this article

Plasmonic computing of spatial differentiation

Author

Listed:
  • Tengfeng Zhu

    (State Key Laboratory of Modern Optical Instrumentation, Zhejiang University)

  • Yihan Zhou

    (State Key Laboratory of Modern Optical Instrumentation, Zhejiang University)

  • Yijie Lou

    (State Key Laboratory of Modern Optical Instrumentation, Zhejiang University)

  • Hui Ye

    (State Key Laboratory of Modern Optical Instrumentation, College of Optical Engineering, Zhejiang University)

  • Min Qiu

    (State Key Laboratory of Modern Optical Instrumentation, College of Optical Engineering, Zhejiang University)

  • Zhichao Ruan

    (State Key Laboratory of Modern Optical Instrumentation, Zhejiang University
    State Key Laboratory of Modern Optical Instrumentation, College of Optical Engineering, Zhejiang University)

  • Shanhui Fan

    (Ginzton Laboratory, Stanford University)

Abstract

Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal–dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

Suggested Citation

  • Tengfeng Zhu & Yihan Zhou & Yijie Lou & Hui Ye & Min Qiu & Zhichao Ruan & Shanhui Fan, 2017. "Plasmonic computing of spatial differentiation," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15391
    DOI: 10.1038/ncomms15391
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15391
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Pengyu Fu & Zimeng Xu & Tiankuang Zhou & Hao Li & Jiamin Wu & Qionghai Dai & Yue Li, 2024. "Reconfigurable metamaterial processing units that solve arbitrary linear calculus equations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Pengcheng Huo & Le Tan & Yaqi Jin & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Song Zhang & Yilin Wang & Haiyang Ren & Yanqing Lu & Ting Xu, 2024. "Broadband and parallel multiple-order optical spatial differentiation enabled by Bessel vortex modulated metalens," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Xinwei Wang & Hao Wang & Jinlu Wang & Xingsi Liu & Huijie Hao & You Sin Tan & Yilei Zhang & He Zhang & Xiangyan Ding & Weisong Zhao & Yuhang Wang & Zhengang Lu & Jian Liu & Joel K. W. Yang & Jiubin Ta, 2023. "Single-shot isotropic differential interference contrast microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Ming Deng & Michele Cotrufo & Jian Wang & Jianji Dong & Zhichao Ruan & Andrea Alù & Lin Chen, 2024. "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Michele Cotrufo & Shaban B. Sulejman & Lukas Wesemann & Md. Ataur Rahman & Madhu Bhaskaran & Ann Roberts & Andrea Alù, 2024. "Reconfigurable image processing metasurfaces with phase-change materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Yang Liu & Mingchuan Huang & Qiankun Chen & Douguo Zhang, 2022. "Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Chao Qian & Zhedong Wang & Haoliang Qian & Tong Cai & Bin Zheng & Xiao Lin & Yichen Shen & Ido Kaminer & Erping Li & Hongsheng Chen, 2022. "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.