IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29716-4.html
   My bibliography  Save this article

Topological phase singularities in atomically thin high-refractive-index materials

Author

Listed:
  • Georgy Ermolaev

    (Moscow Institute of Physics and Technology)

  • Kirill Voronin

    (Moscow Institute of Physics and Technology)

  • Denis G. Baranov

    (Moscow Institute of Physics and Technology)

  • Vasyl Kravets

    (University of Manchester)

  • Gleb Tselikov

    (Moscow Institute of Physics and Technology)

  • Yury Stebunov

    (University of Manchester)

  • Dmitry Yakubovsky

    (Moscow Institute of Physics and Technology)

  • Sergey Novikov

    (Moscow Institute of Physics and Technology)

  • Andrey Vyshnevyy

    (Moscow Institute of Physics and Technology)

  • Arslan Mazitov

    (Moscow Institute of Physics and Technology
    Dukhov Research Institute of Automatics (VNIIA))

  • Ivan Kruglov

    (Moscow Institute of Physics and Technology
    Dukhov Research Institute of Automatics (VNIIA))

  • Sergey Zhukov

    (Moscow Institute of Physics and Technology)

  • Roman Romanov

    (National Research Nuclear University MEPhI (Moscow Engineering Physics Institute))

  • Andrey M. Markeev

    (Moscow Institute of Physics and Technology)

  • Aleksey Arsenin

    (Moscow Institute of Physics and Technology
    GrapheneTek)

  • Kostya S. Novoselov

    (University of Manchester
    National University of Singapore
    Chongqing 2D Materials Institute)

  • Alexander N. Grigorenko

    (University of Manchester)

  • Valentyn Volkov

    (Moscow Institute of Physics and Technology
    XPANCEO)

Abstract

Atomically thin transition metal dichalcogenides (TMDCs) present a promising platform for numerous photonic applications due to excitonic spectral features, possibility to tune their constants by external gating, doping, or light, and mechanical stability. Utilization of such materials for sensing or optical modulation purposes would require a clever optical design, as by itself the 2D materials can offer only a small optical phase delay – consequence of the atomic thickness. To address this issue, we combine films of 2D semiconductors which exhibit excitonic lines with the Fabry-Perot resonators of the standard commercial SiO2/Si substrate, in order to realize topological phase singularities in reflection. Around these singularities, reflection spectra demonstrate rapid phase changes while the structure behaves as a perfect absorber. Furthermore, we demonstrate that such topological phase singularities are ubiquitous for the entire class of atomically thin TMDCs and other high-refractive-index materials, making it a powerful tool for phase engineering in flat optics. As a practical demonstration, we employ PdSe2 topological phase singularities for a refractive index sensor and demonstrate its superior phase sensitivity compared to typical surface plasmon resonance sensors.

Suggested Citation

  • Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29716-4
    DOI: 10.1038/s41467-022-29716-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29716-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29716-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soon Wei Daniel Lim & Joon-Suh Park & Maryna L. Meretska & Ahmed H. Dorrah & Federico Capasso, 2021. "Engineering phase and polarization singularity sheets," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Xingjie Ni & Alexander V. Kildishev & Vladimir M. Shalaev, 2013. "Metasurface holograms for visible light," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    4. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Publisher Correction: Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    5. G. A. Ermolaev & D. V. Grudinin & Y. V. Stebunov & K. V. Voronin & V. G. Kravets & J. Duan & A. B. Mazitov & G. I. Tselikov & A. Bylinkin & D. I. Yakubovsky & S. M. Novikov & D. G. Baranov & A. Y. Nik, 2021. "Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Zengji Yue & Gaolei Xue & Juan Liu & Yongtian Wang & Min Gu, 2017. "Nanometric holograms based on a topological insulator material," Nature Communications, Nature, vol. 8(1), pages 1-5, August.
    7. Kevin Pichler & Matthias Kühmayer & Julian Böhm & Andre Brandstötter & Philipp Ambichl & Ulrich Kuhl & Stefan Rotter, 2019. "Random anti-lasing through coherent perfect absorption in a disordered medium," Nature, Nature, vol. 567(7748), pages 351-355, March.
    8. Kandammathe Valiyaveedu Sreekanth & Sivaramapanicker Sreejith & Song Han & Amita Mishra & Xiaoxuan Chen & Handong Sun & Chwee Teck Lim & Ranjan Singh, 2018. "Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Cotrufo & Shaban B. Sulejman & Lukas Wesemann & Md. Ataur Rahman & Madhu Bhaskaran & Ann Roberts & Andrea Alù, 2024. "Reconfigurable image processing metasurfaces with phase-change materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Ibrahim Tanriover & Sina Abedini Dereshgi & Koray Aydin, 2023. "Metasurface enabled broadband all optical edge detection in visible frequencies," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xinwei Wang & Hao Wang & Jinlu Wang & Xingsi Liu & Huijie Hao & You Sin Tan & Yilei Zhang & He Zhang & Xiangyan Ding & Weisong Zhao & Yuhang Wang & Zhengang Lu & Jian Liu & Joel K. W. Yang & Jiubin Ta, 2023. "Single-shot isotropic differential interference contrast microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yang Liu & Mingchuan Huang & Qiankun Chen & Douguo Zhang, 2022. "Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ying Li & Minghong Qi & Jiaxin Li & Pei-Chao Cao & Dong Wang & Xue-Feng Zhu & Cheng-Wei Qiu & Hongsheng Chen, 2022. "Heat transfer control using a thermal analogue of coherent perfect absorption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Qingbin Fan & Weizhu Xu & Xuemei Hu & Wenqi Zhu & Tao Yue & Cheng Zhang & Feng Yan & Lu Chen & Henri J. Lezec & Yanqing Lu & Amit Agrawal & Ting Xu, 2022. "Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiujuan Zou & Youming Zhang & Ruoyu Lin & Guangxing Gong & Shuming Wang & Shining Zhu & Zhenlin Wang, 2022. "Pixel-level Bayer-type colour router based on metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Zhaojian Sun & Wujia Chen & Bowen Zhang & Lei Gao & Kezheng Tao & Qiang Li & Jia-Lin Sun & Qingfeng Yan, 2023. "Polarization conversion in bottom-up grown quasi-1D fibrous red phosphorus flakes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29716-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.