IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46978-2.html
   My bibliography  Save this article

Molecular robotic agents that survey molecular landscapes for information retrieval

Author

Listed:
  • Sungwook Woo

    (Harvard University
    Harvard Medical School
    Pohang University of Science and Technology)

  • Sinem K. Saka

    (Harvard University
    Harvard Medical School
    Genome Biology Unit)

  • Feng Xuan

    (Harvard University
    Harvard Medical School
    Spear Bio Inc.)

  • Peng Yin

    (Harvard University
    Harvard Medical School)

Abstract

DNA-based artificial motors have allowed the recapitulation of biological functions and the creation of new features. Here, we present a molecular robotic system that surveys molecular environments and reports spatial information in an autonomous and repeated manner. A group of molecular agents, termed ‘crawlers’, roam around and copy information from DNA-labeled targets, generating records that reflect their trajectories. Based on a mechanism that allows random crawling, we show that our system is capable of counting the number of subunits in example molecular complexes. Our system can also detect multivalent proximities by generating concatenated records from multiple local interactions. We demonstrate this capability by distinguishing colocalization patterns of three proteins inside fixed cells under different conditions. These mechanisms for examining molecular landscapes may serve as a basis towards creating large-scale detailed molecular interaction maps inside the cell with nanoscale resolution.

Suggested Citation

  • Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46978-2
    DOI: 10.1038/s41467-024-46978-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46978-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46978-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Benson & Abdulmelik Mohammed & Johan Gardell & Sergej Masich & Eugen Czeizler & Pekka Orponen & Björn Högberg, 2015. "DNA rendering of polyhedral meshes at the nanoscale," Nature, Nature, vol. 523(7561), pages 441-444, July.
    2. Erik Winfree & Furong Liu & Lisa A. Wenzler & Nadrian C. Seeman, 1998. "Design and self-assembly of two-dimensional DNA crystals," Nature, Nature, vol. 394(6693), pages 539-544, August.
    3. Hongzhou Gu & Jie Chao & Shou-Jun Xiao & Nadrian C. Seeman, 2010. "A proximity-based programmable DNA nanoscale assembly line," Nature, Nature, vol. 465(7295), pages 202-205, May.
    4. Thomas E. Schaus & Sungwook Woo & Feng Xuan & Xi Chen & Peng Yin, 2017. "A DNA nanoscope via auto-cycling proximity recording," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Bryan Wei & Mingjie Dai & Peng Yin, 2012. "Complex shapes self-assembled from single-stranded DNA tiles," Nature, Nature, vol. 485(7400), pages 623-626, May.
    6. Bernard Yurke & Andrew J. Turberfield & Allen P. Mills & Friedrich C. Simmel & Jennifer L. Neumann, 2000. "A DNA-fuelled molecular machine made of DNA," Nature, Nature, vol. 406(6796), pages 605-608, August.
    7. Chengde Mao & Weiqiong Sun & Zhiyong Shen & Nadrian C. Seeman, 1999. "A nanomechanical device based on the B–Z transition of DNA," Nature, Nature, vol. 397(6715), pages 144-146, January.
    8. Björn Koos & Gaëlle Cane & Karin Grannas & Liza Löf & Linda Arngården & Johan Heldin & Carl-Magnus Clausson & Axel Klaesson & M. Karoliina Hirvonen & Felipe M. S. de Oliveira & Vladimir O. Talibov & N, 2015. "Proximity-dependent initiation of hybridization chain reaction," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    9. Jianping Zheng & Jens J. Birktoft & Yi Chen & Tong Wang & Ruojie Sha & Pamela E. Constantinou & Stephan L. Ginell & Chengde Mao & Nadrian C. Seeman, 2009. "From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal," Nature, Nature, vol. 461(7260), pages 74-77, September.
    10. Shawn M. Douglas & Hendrik Dietz & Tim Liedl & Björn Högberg & Franziska Graf & William M. Shih, 2009. "Self-assembly of DNA into nanoscale three-dimensional shapes," Nature, Nature, vol. 459(7245), pages 414-418, May.
    11. Kyle Lund & Anthony J. Manzo & Nadine Dabby & Nicole Michelotti & Alexander Johnson-Buck & Jeanette Nangreave & Steven Taylor & Renjun Pei & Milan N. Stojanovic & Nils G. Walter & Erik Winfree & Hao Y, 2010. "Molecular robots guided by prescriptive landscapes," Nature, Nature, vol. 465(7295), pages 206-210, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jae Young Lee & Heeyuen Koh & Do-Nyun Kim, 2023. "A computational model for structural dynamics and reconfiguration of DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Alexandru Amărioarei & Frankie Spencer & Gefry Barad & Ana-Maria Gheorghe & Corina Iţcuş & Iris Tuşa & Ana-Maria Prelipcean & Andrei Păun & Mihaela Păun & Alfonso Rodriguez-Paton & Romică Trandafir & , 2021. "DNA-Guided Assembly for Fibril Proteins," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    9. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Kumar S. Ray & Mandrita Mondal, 2016. "Logical Inference by DNA Strand Algebra," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 29-44, March.
    11. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Andreas Walbrun & Tianhe Wang & Michael Matthies & Petr Šulc & Friedrich C. Simmel & Matthias Rief, 2024. "Single-molecule force spectroscopy of toehold-mediated strand displacement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Martina F. Ober & Anna Baptist & Lea Wassermann & Amelie Heuer-Jungemann & Bert Nickel, 2022. "In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Francis Schuknecht & Karol Kołątaj & Michael Steinberger & Tim Liedl & Theobald Lohmueller, 2023. "Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. A. Mills & N. Aissaoui & D. Maurel & J. Elezgaray & F. Morvan & J. J. Vasseur & E. Margeat & R. B. Quast & J. Lai Kee-Him & N. Saint & C. Benistant & A. Nord & F. Pedaci & G. Bellot, 2022. "A modular spring-loaded actuator for mechanical activation of membrane proteins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    19. Chad R. Simmons & Tara MacCulloch & Miroslav Krepl & Michael Matthies & Alex Buchberger & Ilyssa Crawford & Jiří Šponer & Petr Šulc & Nicholas Stephanopoulos & Hao Yan, 2022. "The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. James Mallos, 2019. "A 6-Letter ‘DNA’ for Baskets with Handles," Mathematics, MDPI, vol. 7(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46978-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.