IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51813-9.html
   My bibliography  Save this article

Single-molecule force spectroscopy of toehold-mediated strand displacement

Author

Listed:
  • Andreas Walbrun

    (Center for Functional Protein Assemblies (CPA))

  • Tianhe Wang

    (Department of Bioscience)

  • Michael Matthies

    (Department of Bioscience)

  • Petr Šulc

    (Department of Bioscience
    Arizona State University)

  • Friedrich C. Simmel

    (Department of Bioscience)

  • Matthias Rief

    (Center for Functional Protein Assemblies (CPA))

Abstract

Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and for a wide range of DNA or RNA-based reaction circuits. Investigation of TMSD kinetics typically relies on bulk fluorescence measurements providing effective, bulk-averaged reaction rates. Information on individual molecules or even base pairs is scarce. In this work, we explore the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy with a microfluidics-enhanced optical trap supported by state-of-the-art coarse-grained simulations. By applying force, we can trigger and observe TMSD in real-time with microsecond and nanometer resolution. We find TMSD proceeds very rapidly under load with single step times of 1 µs. Tuning invasion efficiency by introducing mismatches allows studying thousands of forward/backward invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolation to zero force reveals single step times for DNA invading DNA four times faster than for RNA invading RNA. We also study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have relevance for a wide range of applications in nucleic acid nanotechnology and synthetic biology.

Suggested Citation

  • Andreas Walbrun & Tianhe Wang & Michael Matthies & Petr Šulc & Friedrich C. Simmel & Matthias Rief, 2024. "Single-molecule force spectroscopy of toehold-mediated strand displacement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51813-9
    DOI: 10.1038/s41467-024-51813-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51813-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51813-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert R. F. Machinek & Thomas E. Ouldridge & Natalie E. C. Haley & Jonathan Bath & Andrew J. Turberfield, 2014. "Programmable energy landscapes for kinetic control of DNA strand displacement," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    2. Bernard Yurke & Andrew J. Turberfield & Allen P. Mills & Friedrich C. Simmel & Jennifer L. Neumann, 2000. "A DNA-fuelled molecular machine made of DNA," Nature, Nature, vol. 406(6796), pages 605-608, August.
    3. Gijs J.L. Wuite & Steven B. Smith & Mark Young & David Keller & Carlos Bustamante, 2000. "Single-molecule studies of the effect of template tension on T7 DNA polymerase activity," Nature, Nature, vol. 404(6773), pages 103-106, March.
    4. Lukas Oesinghaus & Friedrich C. Simmel, 2019. "Switching the activity of Cas12a using guide RNA strand displacement circuits," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Jacqueline A. Valeri & Katherine M. Collins & Pradeep Ramesh & Miguel A. Alcantar & Bianca A. Lepe & Timothy K. Lu & Diogo M. Camacho, 2020. "Sequence-to-function deep learning frameworks for engineered riboregulators," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Xiaohui Qu & Jin-Der Wen & Laura Lancaster & Harry F. Noller & Carlos Bustamante & Ignacio Tinoco, 2011. "The ribosome uses two active mechanisms to unwind messenger RNA during translation," Nature, Nature, vol. 475(7354), pages 118-121, July.
    7. Changbong Hyeon & D. Thirumalai, 2011. "Capturing the essence of folding and functions of biomolecules using coarse-grained models," Nature Communications, Nature, vol. 2(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Kathrin Leppek & Gun Woo Byeon & Wipapat Kladwang & Hannah K. Wayment-Steele & Craig H. Kerr & Adele F. Xu & Do Soon Kim & Ved V. Topkar & Christian Choe & Daphna Rothschild & Gerald C. Tiu & Roger We, 2022. "Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Chi, Qingjia & Wang, Guixue & Jiang, Jiahuan, 2013. "The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1072-1079.
    4. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    5. Longfu Xu & Matthew T. J. Halma & Gijs J. L. Wuite, 2024. "Mapping fast DNA polymerase exchange during replication," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ioanna Smyrlaki & Ferenc Fördős & Iris Rocamonde-Lago & Yang Wang & Boxuan Shen & Antonio Lentini & Vincent C. Luca & Björn Reinius & Ana I. Teixeira & Björn Högberg, 2024. "Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ferdinand Greiss & Nicolas Lardon & Leonie Schütz & Yoav Barak & Shirley S. Daube & Elmar Weinhold & Vincent Noireaux & Roy Bar-Ziv, 2024. "A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jack W. Shepherd & Sebastien Guilbaud & Zhaokun Zhou & Jamieson A. L. Howard & Matthew Burman & Charley Schaefer & Adam Kerrigan & Clare Steele-King & Agnes Noy & Mark C. Leake, 2024. "Correlating fluorescence microscopy, optical and magnetic tweezers to study single chiral biopolymers such as DNA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Raphaël V. Gayet & Katherine Ilia & Shiva Razavi & Nathaniel D. Tippens & Makoto A. Lalwani & Kehan Zhang & Jack X. Chen & Jonathan C. Chen & Jose Vargas-Asencio & James J. Collins, 2023. "Autocatalytic base editing for RNA-responsive translational control," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Lauren Gambill & August Staubus & Kim Wai Mo & Andrea Ameruoso & James Chappell, 2023. "A split ribozyme that links detection of a native RNA to orthogonal protein outputs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Chisato Terada & Kaho Oh & Ryutaro Tsubaki & Bun Chan & Nozomi Aibara & Kaname Ohyama & Masa-Aki Shibata & Takehiko Wada & Mariko Harada-Shiba & Asako Yamayoshi & Tsuyoshi Yamamoto, 2023. "Dynamic and static control of the off-target interactions of antisense oligonucleotides using toehold chemistry," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Evangelos-Marios Nikolados & Arin Wongprommoon & Oisin Mac Aodha & Guillaume Cambray & Diego A. Oyarzún, 2022. "Accuracy and data efficiency in deep learning models of protein expression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Gi Bae Kim & Ji Yeon Kim & Jong An Lee & Charles J. Norsigian & Bernhard O. Palsson & Sang Yup Lee, 2023. "Functional annotation of enzyme-encoding genes using deep learning with transformer layers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Junpeng Xu & Guan Alex Wang & Lu Gao & Lang Wu & Qian Lei & Hui Deng & Feng Li, 2023. "Enabling programmable dynamic DNA chemistry using small-molecule DNA binders," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Yusuke Takezawa & Keita Mori & Wei-En Huang & Kotaro Nishiyama & Tong Xing & Takahiro Nakama & Mitsuhiko Shionoya, 2023. "Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51813-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.