IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47742-2.html
   My bibliography  Save this article

Synthetic molecular switches driven by DNA-modifying enzymes

Author

Listed:
  • Hong Kang

    (Tsinghua University
    University of Pennsylvania Perelman School of Medicine)

  • Yuexuan Yang

    (Tsinghua University)

  • Bryan Wei

    (Tsinghua University)

Abstract

Taking inspiration from natural systems, in which molecular switches are ubiquitous in the biochemistry regulatory network, we aim to design and construct synthetic molecular switches driven by DNA-modifying enzymes, such as DNA polymerase and nicking endonuclease. The enzymatic treatments on our synthetic DNA constructs controllably switch ON or OFF the sticky end cohesion and in turn cascade to the structural association or disassociation. Here we showcase the concept in multiple DNA nanostructure systems with robust assembly/disassembly performance. The switch mechanisms are first illustrated in minimalist systems with a few DNA strands. Then the ON/OFF switches are realized in complex DNA lattice and origami systems with designated morphological changes responsive to the specific enzymatic treatments.

Suggested Citation

  • Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47742-2
    DOI: 10.1038/s41467-024-47742-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47742-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47742-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas E. Schaus & Sungwook Woo & Feng Xuan & Xi Chen & Peng Yin, 2017. "A DNA nanoscope via auto-cycling proximity recording," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. S. Okumura & G. Gines & N. Lobato-Dauzier & A. Baccouche & R. Deteix & T. Fujii & Y. Rondelez & A. J. Genot, 2022. "Nonlinear decision-making with enzymatic neural networks," Nature, Nature, vol. 610(7932), pages 496-501, October.
    3. Bernard Yurke & Andrew J. Turberfield & Allen P. Mills & Friedrich C. Simmel & Jennifer L. Neumann, 2000. "A DNA-fuelled molecular machine made of DNA," Nature, Nature, vol. 406(6796), pages 605-608, August.
    4. Philip Petersen & Grigory Tikhomirov & Lulu Qian, 2018. "Information-based autonomous reconfiguration in systems of interacting DNA nanostructures," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Nadrian C. Seeman, 2003. "DNA in a material world," Nature, Nature, vol. 421(6921), pages 427-431, January.
    6. Peng Yin & Harry M. T. Choi & Colby R. Calvert & Niles A. Pierce, 2008. "Programming biomolecular self-assembly pathways," Nature, Nature, vol. 451(7176), pages 318-322, January.
    7. Hong Kang & Tong Lin & Xiaojin Xu & Qing-Shan Jia & Richard Lakerveld & Bryan Wei, 2021. "DNA dynamics and computation based on toehold-free strand displacement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Katherine E. Dunn & Frits Dannenberg & Thomas E. Ouldridge & Marta Kwiatkowska & Andrew J. Turberfield & Jonathan Bath, 2015. "Guiding the folding pathway of DNA origami," Nature, Nature, vol. 525(7567), pages 82-86, September.
    9. Kyle Lund & Anthony J. Manzo & Nadine Dabby & Nicole Michelotti & Alexander Johnson-Buck & Jeanette Nangreave & Steven Taylor & Renjun Pei & Milan N. Stojanovic & Nils G. Walter & Erik Winfree & Hao Y, 2010. "Molecular robots guided by prescriptive landscapes," Nature, Nature, vol. 465(7295), pages 206-210, May.
    10. Bryan Wei & Mingjie Dai & Peng Yin, 2012. "Complex shapes self-assembled from single-stranded DNA tiles," Nature, Nature, vol. 485(7400), pages 623-626, May.
    11. Lulu Qian & Erik Winfree & Jehoshua Bruck, 2011. "Neural network computation with DNA strand displacement cascades," Nature, Nature, vol. 475(7356), pages 368-372, July.
    12. Wen Wang & Silian Chen & Byoungkwon An & Kai Huang & Tanxi Bai & Mengyuan Xu & Gaëtan Bellot & Yonggang Ke & Ye Xiang & Bryan Wei, 2019. "Complex wireframe DNA nanostructures from simple building blocks," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ferdinand Greiss & Nicolas Lardon & Leonie Schütz & Yoav Barak & Shirley S. Daube & Elmar Weinhold & Vincent Noireaux & Roy Bar-Ziv, 2024. "A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    4. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Marcello DeLuca & Daniel Duke & Tao Ye & Michael Poirier & Yonggang Ke & Carlos Castro & Gaurav Arya, 2024. "Mechanism of DNA origami folding elucidated by mesoscopic simulations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Avik Samanta & Maximilian Hörner & Wei Liu & Wilfried Weber & Andreas Walther, 2022. "Signal-processing and adaptive prototissue formation in metabolic DNA protocells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Siddharth Agarwal & Dino Osmanovic & Mahdi Dizani & Melissa A. Klocke & Elisa Franco, 2024. "Dynamic control of DNA condensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Guillermo Rodrigo & Thomas E Landrain & Eszter Majer & José-Antonio Daròs & Alfonso Jaramillo, 2013. "Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-11, August.
    12. Juan Pablo Durán Ortiz, 2014. "Financialization: The AIDS of economic system," Ensayos de Economía 12299, Universidad Nacional de Colombia Sede Medellín.
    13. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Elena Agliari & Adriano Barra & Giulio Landolfi & Sara Murciano & Sarah Perrone, 2018. "Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics," Complexity, Hindawi, vol. 2018, pages 1-16, January.
    15. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    16. Junpeng Xu & Guan Alex Wang & Lu Gao & Lang Wu & Qian Lei & Hui Deng & Feng Li, 2023. "Enabling programmable dynamic DNA chemistry using small-molecule DNA binders," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Ahmed A. Agiza & Kady Oakley & Jacob K. Rosenstein & Brenda M. Rubenstein & Eunsuk Kim & Marc Riedel & Sherief Reda, 2023. "Digital circuits and neural networks based on acid-base chemistry implemented by robotic fluid handling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Yusuke Takezawa & Keita Mori & Wei-En Huang & Kotaro Nishiyama & Tong Xing & Takahiro Nakama & Mitsuhiko Shionoya, 2023. "Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47742-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.