IDEAS home Printed from https://ideas.repec.org/a/wsi/nmncxx/v12y2016i01ns1793005716500046.html
   My bibliography  Save this article

Logical Inference by DNA Strand Algebra

Author

Listed:
  • Kumar S. Ray

    (Electronics and Communication Sciences Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India)

  • Mandrita Mondal

    (Electronics and Communication Sciences Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India)

Abstract

Based on the concept of DNA strand displacement and DNA strand algebra we have developed a method for logical inference which is not based on silicon-based computing. Essentially, it is a paradigm shift from silicon to carbon. In this paper, we have considered the inference mechanism, viz. modus ponens, to draw conclusion from any observed fact. Thus, the present approach to logical inference based on DNA strand algebra is basically an attempt to develop expert system design in the domain of DNA computing. We have illustrated our methodology with respect to the worked out example. Our methodology is very flexible for implementation of different expert system applications.

Suggested Citation

  • Kumar S. Ray & Mandrita Mondal, 2016. "Logical Inference by DNA Strand Algebra," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 29-44, March.
  • Handle: RePEc:wsi:nmncxx:v:12:y:2016:i:01:n:s1793005716500046
    DOI: 10.1142/S1793005716500046
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S1793005716500046
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S1793005716500046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Winfree & Furong Liu & Lisa A. Wenzler & Nadrian C. Seeman, 1998. "Design and self-assembly of two-dimensional DNA crystals," Nature, Nature, vol. 394(6693), pages 539-544, August.
    2. Yaakov Benenson & Tamar Paz-Elizur & Rivka Adar & Ehud Keinan & Zvi Livneh & Ehud Shapiro, 2001. "Programmable and autonomous computing machine made of biomolecules," Nature, Nature, vol. 414(6862), pages 430-434, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Zachary R. Adam & Albert C. Fahrenbach & Betul Kacar & Masashi Aono, 2018. "Prebiotic Geochemical Automata at the Intersection of Radiolytic Chemistry, Physical Complexity, and Systems Biology," Complexity, Hindawi, vol. 2018, pages 1-21, June.
    5. Xiang Tian & Xiyu Liu & Hongyan Zhang & Minghe Sun & Yuzhen Zhao, 2020. "A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
    6. Tyler G Moore & Max H Garzon & Russell J Deaton, 2015. "Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    7. Shivendra Pandey & Daniel Johnson & Ryan Kaplan & Joseph Klobusicky & Govind Menon & David H Gracias, 2014. "Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    8. Wang, Liqiu & Zhang, Yuxiang & Cheng, Lin, 2009. "Magic microfluidic T-junctions: Valving and bubbling," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1530-1537.
    9. Anne M. Luescher & Andreas L. Gimpel & Wendelin J. Stark & Reinhard Heckel & Robert N. Grass, 2024. "Chemical unclonable functions based on operable random DNA pools," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Aleck Johnsen & Ming-Yang Kao & Shinnosuke Seki, 2017. "A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tileset synthesis," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 496-529, February.
    11. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:12:y:2016:i:01:n:s1793005716500046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/nmnc/nmnc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.