IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46464-9.html
   My bibliography  Save this article

Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries

Author

Listed:
  • Quanquan Guo

    (Technische Universität Dresden
    Max Planck Institute of Microstructure Physics
    Sichuan University)

  • Wei Li

    (Technische Universität Dresden
    Lanzhou University)

  • Xiaodong Li

    (Technische Universität Dresden
    Max Planck Institute of Microstructure Physics)

  • Jiaxu Zhang

    (Technische Universität Dresden)

  • Davood Sabaghi

    (Technische Universität Dresden)

  • Jianjun Zhang

    (Technische Universität Dresden)

  • Bowen Zhang

    (Fraunhofer Institute for Ceramic Technologies and System (IKTS))

  • Dongqi Li

    (Technische Universität Dresden)

  • Jingwei Du

    (Technische Universität Dresden)

  • Xingyuan Chu

    (Technische Universität Dresden)

  • Sein Chung

    (Pohang University of Science and Technology)

  • Kilwon Cho

    (Pohang University of Science and Technology)

  • Nguyen Ngan Nguyen

    (Technische Universität Dresden
    Max Planck Institute of Microstructure Physics)

  • Zhongquan Liao

    (Fraunhofer Institute for Ceramic Technologies and System (IKTS))

  • Zhen Zhang

    (University of Science and Technology of China)

  • Xinxing Zhang

    (Sichuan University)

  • Grégory F. Schneider

    (Leiden University)

  • Thomas Heine

    (Technische Universität Dresden
    Leipzig Research Branch
    Yonsei University)

  • Minghao Yu

    (Technische Universität Dresden)

  • Xinliang Feng

    (Technische Universität Dresden
    Max Planck Institute of Microstructure Physics)

Abstract

The pressing demand for sustainable energy storage solutions has spurred the burgeoning development of aqueous zinc batteries. However, kinetics-sluggish Zn2+ as the dominant charge carriers in cathodes leads to suboptimal charge-storage capacity and durability of aqueous zinc batteries. Here, we discover that an ultrathin two-dimensional polyimine membrane, featured by dual ion-transport nanochannels and rich proton-conduction groups, facilitates rapid and selective proton passing. Subsequently, a distinctive electrochemistry transition shifting from sluggish Zn2+-dominated to fast-kinetics H+-dominated Faradic reactions is achieved for high-mass-loading cathodes by using the polyimine membrane as an interfacial coating. Notably, the NaV3O8·1.5H2O cathode (10 mg cm−2) with this interfacial coating exhibits an ultrahigh areal capacity of 4.5 mAh cm−2 and a state-of-the-art energy density of 33.8 Wh m−2, along with apparently enhanced cycling stability. Additionally, we showcase the applicability of the interfacial proton-selective coating to different cathodes and aqueous electrolytes, validating its universality for developing reliable aqueous batteries.

Suggested Citation

  • Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46464-9
    DOI: 10.1038/s41467-024-46464-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46464-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46464-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang Wan & Linlin Zhang & Xi Dai & Xinyu Wang & Zhiqiang Niu & Jun Chen, 2018. "Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Chongyin Yang & Jiale Xia & Chunyu Cui & Travis P. Pollard & Jenel Vatamanu & Antonio Faraone & Joseph A. Dura & Madhusudan Tyagi & Alex Kattan & Elijah Thimsen & Jijian Xu & Wentao Song & Enyuan Hu &, 2023. "All-temperature zinc batteries with high-entropy aqueous electrolyte," Nature Sustainability, Nature, vol. 6(3), pages 325-335, March.
    3. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Cheng Zhong & Bin Liu & Jia Ding & Xiaorui Liu & Yuwei Zhong & Yuan Li & Changbin Sun & Xiaopeng Han & Yida Deng & Naiqin Zhao & Wenbin Hu, 2020. "Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries," Nature Energy, Nature, vol. 5(6), pages 440-449, June.
    6. Jianhang Huang & Zhuo Wang & Mengyan Hou & Xiaoli Dong & Yao Liu & Yonggang Wang & Yongyao Xia, 2018. "Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Yifei Yuan & Ryan Sharpe & Kun He & Chenghang Li & Mahmoud Tamadoni Saray & Tongchao Liu & Wentao Yao & Meng Cheng & Huile Jin & Shun Wang & Khalil Amine & Reza Shahbazian-Yassar & M. Saiful Islam & J, 2022. "Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries," Nature Sustainability, Nature, vol. 5(10), pages 890-898, October.
    8. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    9. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Xianyong Wu & Jessica J. Hong & Woochul Shin & Lu Ma & Tongchao Liu & Xuanxuan Bi & Yifei Yuan & Yitong Qi & T. Wesley Surta & Wenxi Huang & Joerg Neuefeind & Tianpin Wu & P. Alex Greaney & Jun Lu & X, 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries," Nature Energy, Nature, vol. 4(2), pages 123-130, February.
    12. L. Mogg & S. Zhang & G.-P. Hao & K. Gopinadhan & D. Barry & B. L. Liu & H. M. Cheng & A. K. Geim & M. Lozada-Hidalgo, 2019. "Perfect proton selectivity in ion transport through two-dimensional crystals," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Xin Shi & Jinhao Xie & Jin Wang & Shilei Xie & Zujin Yang & Xihong Lu, 2024. "A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Kefu Zhu & Shiqiang Wei & Hongwei Shou & Feiran Shen & Shuangming Chen & Pengjun Zhang & Changda Wang & Yuyang Cao & Xin Guo & Mi Luo & Hongjun Zhang & Bangjiao Ye & Xiaojun Wu & Lunhua He & Li Song, 2021. "Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Runlin Wang & Haozhe Zhang & Qiyu Liu & Fu Liu & Xile Han & Xiaoqing Liu & Kaiwei Li & Gaozhi Xiao & Jacques Albert & Xihong Lu & Tuan Guo, 2022. "Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Haiming Lv & Zhiquan Wei & Cuiping Han & Xiaolong Yang & Zijie Tang & Yantu Zhang & Chunyi Zhi & Hongfei Li, 2023. "Cross-linked polyaniline for production of long lifespan aqueous iron||organic batteries with electrochromic properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Hongyu Lu & Jisong Hu & Xijun Wei & Kaiqi Zhang & Xiao Xiao & Jingxin Zhao & Qiang Hu & Jing Yu & Guangmin Zhou & Bingang Xu, 2023. "A recyclable biomass electrolyte towards green zinc-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    17. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46464-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.