IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04949-4.html
   My bibliography  Save this article

Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery

Author

Listed:
  • Jianhang Huang

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University
    Nanchang Hangkong University)

  • Zhuo Wang

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

  • Mengyan Hou

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

  • Xiaoli Dong

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

  • Yao Liu

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

  • Yonggang Wang

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

  • Yongyao Xia

    (iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University)

Abstract

Rechargeable zinc–manganese dioxide batteries that use mild aqueous electrolytes are attracting extensive attention due to high energy density and environmental friendliness. Unfortunately, manganese dioxide suffers from substantial phase changes (e.g., from initial α-, β-, or γ-phase to a layered structure and subsequent structural collapse) during cycling, leading to very poor stability at high charge/discharge depth. Herein, cyclability is improved by the design of a polyaniline-intercalated layered manganese dioxide, in which the polymer-strengthened layered structure and nanoscale size of manganese dioxide serves to eliminate phase changes and facilitate charge storage. Accordingly, an unprecedented stability of 200 cycles with at a high capacity of 280 mA h g−1 (i.e., 90% utilization of the theoretical capacity of manganese dioxide) is achieved, as well as a long-term stability of 5000 cycles at a utilization of 40%. The encouraging performance sheds light on the design of advanced cathodes for aqueous zinc-ion batteries.

Suggested Citation

  • Jianhang Huang & Zhuo Wang & Mengyan Hou & Xiaoli Dong & Yao Liu & Yonggang Wang & Yongyao Xia, 2018. "Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04949-4
    DOI: 10.1038/s41467-018-04949-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04949-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04949-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Gong, Shengen & Zhao, Jiaxin & Sun, Kaisheng & Jia, Xiaoteng & Chao, Danming, 2024. "Interfacial structuring of MnN and MnC bonds by defect engineering for high-performance Zn-Mn battery," Applied Energy, Elsevier, vol. 365(C).
    4. Runlin Wang & Haozhe Zhang & Qiyu Liu & Fu Liu & Xile Han & Xiaoqing Liu & Kaiwei Li & Gaozhi Xiao & Jacques Albert & Xihong Lu & Tuan Guo, 2022. "Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04949-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.