IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52651-5.html
   My bibliography  Save this article

Unraveling chemical origins of dendrite formation in zinc-ion batteries via in situ/operando X-ray spectroscopy and imaging

Author

Listed:
  • Hongliu Dai

    (Center Énergie Matériaux Télécommunications)

  • Tianxiao Sun

    (Canadian Light Source
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Jigang Zhou

    (Canadian Light Source
    General Motors Research and Development Center)

  • Jian Wang

    (Canadian Light Source)

  • Zhangsen Chen

    (Center Énergie Matériaux Télécommunications)

  • Gaixia Zhang

    (École de Technologie Supérieure (ÉTS))

  • Shuhui Sun

    (Center Énergie Matériaux Télécommunications)

Abstract

To prevent zinc (Zn) dendrite formation and improve electrochemical stability, it is essential to understand Zn dendrite growth, particularly in terms of morphology and relation with the solid electrolyte interface (SEI) film. In this study, we employ in-situ scanning transmission X-ray microscopy (STXM) and spectro-ptychography to monitor the morphology evolution of Zn dendrites and to identify their chemical composition and distribution on the Zn surface during the stripping/plating progress. Our findings reveal that in 50 mM ZnSO4, the initiation of moss/whisker dendrites is chemically controlled, while their continued growth over extended cycles is kinetically governed. The presence of a dense and stable SEI film is critical for inhibiting the formation and growth of Zn dendrites. By adding 50 mM lithium chloride (LiCl) as an electrolyte additive, we successfully construct a dense and stable SEI film composed of Li2S2O7 and Li2CO3, which significantly improves cycling performance. Moreover, the symmetric cell achieves a prolonged cycle life of up to 3900 h with the incorporation of 5% 12-crown-4 additives. This work offers a strategy for in-situ observation and analysis of Zn dendrite formation mechanisms and provides an effective approach for designing high-performance Zn-ion batteries.

Suggested Citation

  • Hongliu Dai & Tianxiao Sun & Jigang Zhou & Jian Wang & Zhangsen Chen & Gaixia Zhang & Shuhui Sun, 2024. "Unraveling chemical origins of dendrite formation in zinc-ion batteries via in situ/operando X-ray spectroscopy and imaging," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52651-5
    DOI: 10.1038/s41467-024-52651-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52651-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52651-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chongyin Yang & Jiale Xia & Chunyu Cui & Travis P. Pollard & Jenel Vatamanu & Antonio Faraone & Joseph A. Dura & Madhusudan Tyagi & Alex Kattan & Elijah Thimsen & Jijian Xu & Wentao Song & Enyuan Hu &, 2023. "All-temperature zinc batteries with high-entropy aqueous electrolyte," Nature Sustainability, Nature, vol. 6(3), pages 325-335, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hongyu Lu & Jisong Hu & Xijun Wei & Kaiqi Zhang & Xiao Xiao & Jingxin Zhao & Qiang Hu & Jing Yu & Guangmin Zhou & Bingang Xu, 2023. "A recyclable biomass electrolyte towards green zinc-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Xin Shi & Jinhao Xie & Jin Wang & Shilei Xie & Zujin Yang & Xihong Lu, 2024. "A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52651-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.