IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38890-y.html
   My bibliography  Save this article

Cross-linked polyaniline for production of long lifespan aqueous iron||organic batteries with electrochromic properties

Author

Listed:
  • Haiming Lv

    (Songshan Lake Materials Laboratory, Dongguan
    Yan’an University)

  • Zhiquan Wei

    (City University of Hong Kong)

  • Cuiping Han

    (Faculty of Materials Science and Engineering, Low Dimensional Energy Materials Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)

  • Xiaolong Yang

    (Songshan Lake Materials Laboratory, Dongguan)

  • Zijie Tang

    (Songshan Lake Materials Laboratory, Dongguan)

  • Yantu Zhang

    (Yan’an University)

  • Chunyi Zhi

    (Songshan Lake Materials Laboratory, Dongguan
    City University of Hong Kong)

  • Hongfei Li

    (Songshan Lake Materials Laboratory, Dongguan
    Southern University of Science and Technology, Shenzhen)

Abstract

Aqueous iron batteries are appealing candidates for large-scale energy storage due to their safety and low-cost aspects. However, the development of aqueous Fe batteries is hindered by their inadequate long-term cycling stability. Here, we propose the synthesis and application as positive electrode active material of cross-linked polyaniline (C-PANI). We use melamine as the crosslinker to improve the electronical conductivity and electrochemical stability of the C-PANI. Indeed, when the C-PANI is tested in combination with a Fe metal negative electrode and 1 M iron trifluoromethanesulfonate (Fe(TOF)2) electrolyte solution, the coin cell can deliver a specific capacity of about 110 mAh g−1 and an average discharge voltage of 0.55 V after 39,000 cycles at 25 A g−1 with a test temperature of 28 °C ± 1 °C. Furthermore, mechanistic studies suggest that Fe2+ ions are bonded to TOF− anions to form positively charged complexes Fe(TOF)+, which are stored with protons in the C-PANI electrode structures. Finally, we also demonstrate the use of C-PANI in combination with a polymeric hydrogel electrolyte to produce a flexible reflective electrochromic lab-scale iron battery prototype.

Suggested Citation

  • Haiming Lv & Zhiquan Wei & Cuiping Han & Xiaolong Yang & Zijie Tang & Yantu Zhang & Chunyi Zhi & Hongfei Li, 2023. "Cross-linked polyaniline for production of long lifespan aqueous iron||organic batteries with electrochromic properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38890-y
    DOI: 10.1038/s41467-023-38890-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38890-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38890-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cuiping Han & Hongfei Li & Yu Li & Jiaxiong Zhu & Chunyi Zhi, 2021. "Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Xianyong Wu & Jessica J. Hong & Woochul Shin & Lu Ma & Tongchao Liu & Xuanxuan Bi & Yifei Yuan & Yitong Qi & T. Wesley Surta & Wenxi Huang & Joerg Neuefeind & Tianpin Wu & P. Alex Greaney & Jun Lu & X, 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries," Nature Energy, Nature, vol. 4(2), pages 123-130, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Mochou Liao & Xiao Ji & Yongjie Cao & Jie Xu & Xuan Qiu & Yihua Xie & Fei Wang & Chunsheng Wang & Yongyao Xia, 2022. "Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yongjiu Lei & Wenli Zhao & Jun Yin & Yinchang Ma & Zhiming Zhao & Jian Yin & Yusuf Khan & Mohamed Nejib Hedhili & Long Chen & Qingxiao Wang & Youyou Yuan & Xixiang Zhang & Osman M. Bakr & Omar F. Moha, 2023. "Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Donghoon Lee & You-Yeob Song & Angyin Wu & Jia Li & Jeonghun Yun & Dong-Hwa Seo & Seok Woo Lee, 2024. "Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yulong Huang & Jennifer L. Gottfried & Arpita Sarkar & Gengyi Zhang & Haiqing Lin & Shenqiang Ren, 2023. "Proton-controlled molecular ionic ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Wei Liu & Jiage Yu & Tianshui Li & Shihang Li & Boyu Ding & Xinlong Guo & Aiqing Cao & Qihao Sha & Daojin Zhou & Yun Kuang & Xiaoming Sun, 2024. "Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38890-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.