IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45159-5.html
   My bibliography  Save this article

The role of interdecadal climate oscillations in driving Arctic atmospheric river trends

Author

Listed:
  • Weiming Ma

    (Pacific Northwest National Laboratory)

  • Hailong Wang

    (Pacific Northwest National Laboratory)

  • Gang Chen

    (University of California Los Angeles)

  • L. Ruby Leung

    (Pacific Northwest National Laboratory)

  • Jian Lu

    (Pacific Northwest National Laboratory)

  • Philip J. Rasch

    (University of Washington)

  • Qiang Fu

    (University of Washington)

  • Ben Kravitz

    (Pacific Northwest National Laboratory
    Indiana University)

  • Yufei Zou

    (Pacific Northwest National Laboratory)

  • John J. Cassano

    (University of Colorado
    University of Colorado
    University of Colorado)

  • Wieslaw Maslowski

    (Naval Postgraduate School)

Abstract

Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.

Suggested Citation

  • Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45159-5
    DOI: 10.1038/s41467-024-45159-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45159-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45159-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Zhang & Gang Chen & Mingfang Ting & L. Ruby Leung & Bin Guan & Laifang Li, 2023. "More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice," Nature Climate Change, Nature, vol. 13(3), pages 266-273, March.
    2. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(11), pages 852-857, November.
    3. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Author Correction: Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(12), pages 1005-1005, December.
    5. Yufei Zou & Philip J. Rasch & Hailong Wang & Zuowei Xie & Rudong Zhang, 2021. "Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Dawei Li & Rong Zhang & Thomas R. Knutson, 2017. "On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    7. Zhongfang Liu & Camille Risi & Francis Codron & Xiaogang He & Christopher J. Poulsen & Zhongwang Wei & Dong Chen & Sha Li & Gabriel J. Bowen, 2021. "Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    9. Steven C. Amstrup & Eric T. DeWeaver & David C. Douglas & Bruce G. Marcot & George M. Durner & Cecilia M. Bitz & David A. Bailey, 2010. "Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence," Nature, Nature, vol. 468(7326), pages 955-958, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    4. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Binhe Luo & Dehai Luo & Aiguo Dai & Cunde Xiao & Ian Simmonds & Edward Hanna & James Overland & Jiaqi Shi & Xiaodan Chen & Yao Yao & Wansuo Duan & Yimin Liu & Qiang Zhang & Xiyan Xu & Yina Diao & Zhin, 2024. "Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    8. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    9. Liangying Zeng & Yao Ha & Chuanfeng Zhao & Haixia Dai & Yimin Zhu & Yijia Hu & Xiaoyu Zhu & Zhiyuan Ding & Yudi Liu & Zhong Zhong, 2024. "Tropical cyclone activity over western North Pacific favors Arctic sea ice increase," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Da Wei & Jing Tao & Zhuangzhuang Wang & Hui Zhao & Wei Zhao & Xiaodan Wang, 2024. "Elevation-dependent pattern of net CO2 uptake across China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zhibiao Wang & Qinghua Ding & Renguang Wu & Thomas J. Ballinger & Bin Guan & Deniz Bozkurt & Deanna Nash & Ian Baxter & Dániel Topál & Zhe Li & Gang Huang & Wen Chen & Shangfeng Chen & Xi Cao & Zhang , 2024. "Role of atmospheric rivers in shaping long term Arctic moisture variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Clifford Chuwah & Twan Noije & Detlef Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    17. Hasan Sohail & Virpi Kollanus & Pekka Tiittanen & Alexandra Schneider & Timo Lanki, 2020. "Heat, Heatwaves and Cardiorespiratory Hospital Admissions in Helsinki, Finland," IJERPH, MDPI, vol. 17(21), pages 1-11, October.
    18. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    20. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45159-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.