IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i3d10.1038_s41558-023-01599-3.html
   My bibliography  Save this article

More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice

Author

Listed:
  • Pengfei Zhang

    (The Pennsylvania State University)

  • Gang Chen

    (University of California Los Angeles)

  • Mingfang Ting

    (Columbia University)

  • L. Ruby Leung

    (Pacific Northwest National Laboratory)

  • Bin Guan

    (University of California Los Angeles
    California Institute of Technology)

  • Laifang Li

    (The Pennsylvania State University
    The Pennsylvania State Univeristy
    The Pennsylvania State University)

Abstract

In recent decades, Arctic sea-ice coverage underwent a drastic decline in winter, when sea ice is expected to recover following the melting season. It is unclear to what extent atmospheric processes such as atmospheric rivers (ARs), intense corridors of moisture transport, contribute to this reduced recovery of sea ice. Here, using observations and climate model simulations, we find a robust frequency increase in ARs in early winter over the Barents–Kara Seas and the central Arctic for 1979–2021. The moisture carried by more frequent ARs has intensified surface downward longwave radiation and rainfall, caused stronger melting of thin, fragile ice cover and slowed the seasonal recovery of sea ice, accounting for 34% of the sea-ice cover decline in the Barents–Kara Seas and central Arctic. A series of model ensemble experiments suggests that, in addition to a uniform AR increase in response to anthropogenic warming, tropical Pacific variability also contributes to the observed Arctic AR changes.

Suggested Citation

  • Pengfei Zhang & Gang Chen & Mingfang Ting & L. Ruby Leung & Bin Guan & Laifang Li, 2023. "More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice," Nature Climate Change, Nature, vol. 13(3), pages 266-273, March.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:3:d:10.1038_s41558-023-01599-3
    DOI: 10.1038/s41558-023-01599-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01599-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01599-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhibiao Wang & Qinghua Ding & Renguang Wu & Thomas J. Ballinger & Bin Guan & Deniz Bozkurt & Deanna Nash & Ian Baxter & Dániel Topál & Zhe Li & Gang Huang & Wen Chen & Shangfeng Chen & Xi Cao & Zhang , 2024. "Role of atmospheric rivers in shaping long term Arctic moisture variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Francois Lapointe & Ambarish V. Karmalkar & Raymond S. Bradley & Michael J. Retelle & Feng Wang, 2024. "Climate extremes in Svalbard over the last two millennia are linked to atmospheric blocking," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:3:d:10.1038_s41558-023-01599-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.