IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4986-d858055.html
   My bibliography  Save this article

Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic

Author

Listed:
  • Zhen Li

    (GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
    Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany)

  • Erik Spangenberg

    (GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany)

  • Judith M. Schicks

    (GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
    Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany)

  • Thomas Kempka

    (GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
    Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany)

Abstract

The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH 4 ), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH 4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit–Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo–hydraulic–chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH 4 -rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH 4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8–1.3 °C, triggered by the global temperature increase of about 0.44 °C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s.

Suggested Citation

  • Zhen Li & Erik Spangenberg & Judith M. Schicks & Thomas Kempka, 2022. "Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic," Energies, MDPI, vol. 15(14), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4986-:d:858055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Judah Cohen & Karl Pfeiffer & Jennifer A. Francis, 2018. "Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Jacek Majorowicz & Kirk Osadetz & Jan Safanda, 2015. "Models of Talik, Permafrost and Gas Hydrate Histories—Beaufort Mackenzie Basin, Canada," Energies, MDPI, vol. 8(7), pages 1-27, June.
    4. C. R. Burn & S. V. Kokelj, 2009. "The environment and permafrost of the Mackenzie Delta area," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(2), pages 83-105, April.
    5. Zhen Li & Erik Spangenberg & Judith M. Schicks & Thomas Kempka, 2022. "Numerical Simulation of Hydrate Formation in the LArge-Scale Reservoir Simulator (LARS)," Energies, MDPI, vol. 15(6), pages 1-27, March.
    6. Katie Taladay & Brian Boston & Gregory F. Moore, 2017. "Gas-In-Place Estimate for Potential Gas Hydrate Concentrated Zone in the Kumano Basin, Nankai Trough Forearc, Japan," Energies, MDPI, vol. 10(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Reyes Mason & Bonita B. Sharma & Jayme E. Walters & Christine C. Ekenga, 2020. "Mental Health and Weather Extremes in a Southeastern U.S. City: Exploring Group Differences by Race," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    2. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jill F. Lundell & Brennan Bean & Jürgen Symanzik, 2023. "Let’s talk about the weather: a cluster-based approach to weather forecast accuracy," Computational Statistics, Springer, vol. 38(3), pages 1135-1155, September.
    4. Xiaofei Yang & Haopeng Yu & Susan Duncan & Yueying Zhang & Jitender Cheema & Haifeng Liu & J. Benjamin Miller & Jie Zhang & Chun Kit Kwok & Huakun Zhang & Yiliang Ding, 2022. "RNA G-quadruplex structure contributes to cold adaptation in plants," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lauren Dundes & Madeline Streiff & Zachary Streiff, 2018. "Storm Power, an Icy Tower and Elsa’s Bower: The Winds of Change in Disney’s Frozen," Social Sciences, MDPI, vol. 7(6), pages 1-29, May.
    6. Hua Liao & Chen Zhang & Paul J. Burke & Ru Li & Yi‐Ming Wei, 2023. "Extreme temperatures, mortality, and adaptation: Evidence from the county level in China," Health Economics, John Wiley & Sons, Ltd., vol. 32(4), pages 953-969, April.
    7. Yu Yueyue & Yang Wenwen & Zhang Lingli & Guan Zhaoyong & Yang Qinlan & Hu Muxin & Qiu Wentian & Wang Jingyi, 2023. "Region-dependent meteorological conditions for the winter cold hazards with and without precipitation in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2673-2698, February.
    8. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Ruslan Gizatullin & Mikhail Dvoynikov & Natalya Romanova & Victor Nikitin, 2023. "Drilling in Gas Hydrates: Managing Gas Appearance Risks," Energies, MDPI, vol. 16(5), pages 1-13, March.
    11. Colin D. Butler, 2018. "Climate Change, Health and Existential Risks to Civilization: A Comprehensive Review (1989–2013)," IJERPH, MDPI, vol. 15(10), pages 1-21, October.
    12. Yongyang Cai & William Brock & Anastasios Xepapadeas & Kenneth Judd, 2018. "Climate Policy under Cooperation and Competition between Regions with Spatial Heat Transport," DEOS Working Papers 1806, Athens University of Economics and Business.
    13. C. Derksen & S. Smith & M. Sharp & L. Brown & S. Howell & L. Copland & D. Mueller & Y. Gauthier & C. Fletcher & A. Tivy & M. Bernier & J. Bourgeois & R. Brown & C. Burn & C. Duguay & P. Kushner & A. L, 2012. "Variability and change in the Canadian cryosphere," Climatic Change, Springer, vol. 115(1), pages 59-88, November.
    14. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    15. Indrė Gečaitė & Egidijus Rimkus, 2023. "Wintertime cold and warm spells in the eastern part of the Baltic Sea region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2435-2456, February.
    16. Ramandeep Kaur Bagri & Yihsu Chen, 2022. "Wildfire Modeling: Designing a Market to Restore Assets," Papers 2205.13773, arXiv.org, revised Mar 2024.
    17. Erik T. Smith & Scott C. Sheridan, 2021. "Projections of cold air outbreaks in CMIP6 earth system models," Climatic Change, Springer, vol. 169(1), pages 1-16, November.
    18. Cook, Nikolai & Heyes, Anthony, 2020. "Brain freeze: outdoor cold and indoor cognitive performance," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    19. Yongyang Cai & William Brock & Anastasios Xepapadeas & Kenneth Judd, 2019. "Climate Policy under Spatial Heat Transport: Cooperative and Noncooperative Regional Outcomes," Papers 1909.04009, arXiv.org.
    20. Joshua R Thienpont & Steven V Kokelj & Jennifer B Korosi & Elisa S Cheng & Cyndy Desjardins & Linda E Kimpe & Jules M Blais & Michael FJ Pisaric & John P Smol, 2013. "Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4986-:d:858055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.