IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50346-5.html
   My bibliography  Save this article

Upland Yedoma taliks are an unpredicted source of atmospheric methane

Author

Listed:
  • K. M. Walter Anthony

    (University Alaska Fairbanks)

  • P. Anthony

    (University Alaska Fairbanks)

  • N. Hasson

    (University Alaska Fairbanks)

  • C. Edgar

    (University Alaska Fairbanks)

  • O. Sivan

    (Ben Gurion University of the Negev)

  • E. Eliani-Russak

    (Ben Gurion University of the Negev)

  • O. Bergman

    (University Alaska Fairbanks
    Ben Gurion University of the Negev)

  • B. J. Minsley

    (Geology, Geophysics, and Geochemistry Science Center)

  • S. R. James

    (Geology, Geophysics, and Geochemistry Science Center)

  • N. J. Pastick

    (Earth Resources Observation and Science Center)

  • A. Kholodov

    (University Alaska Fairbanks)

  • S. Zimov

    (Northeast Science Station)

  • E. Euskirchen

    (University Alaska Fairbanks)

  • M. S. Bret-Harte

    (University Alaska Fairbanks)

  • G. Grosse

    (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
    Institute of Geosciences)

  • M. Langer

    (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
    Vrije Universiteit Amsterdam)

  • J. Nitzbon

    (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research)

Abstract

Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1 summer, 150–180 mg m−2 d−1 winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21st and 22nd centuries. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma.

Suggested Citation

  • K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50346-5
    DOI: 10.1038/s41467-024-50346-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50346-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50346-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Author Correction: Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(12), pages 1005-1005, December.
    2. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(11), pages 852-857, November.
    3. Carolina Voigt & Anna-Maria Virkkala & Gabriel Hould Gosselin & Kathryn A. Bennett & T. Andrew Black & Matteo Detto & Charles Chevrier-Dion & Georg Guggenberger & Wasi Hashmi & Lukas Kohl & Dan Kou & , 2023. "Arctic soil methane sink increases with drier conditions and higher ecosystem respiration," Nature Climate Change, Nature, vol. 13(10), pages 1095-1104, October.
    4. Youmi Oh & Qianlai Zhuang & Licheng Liu & Lisa R. Welp & Maggie C. Y. Lau & Tullis C. Onstott & David Medvigy & Lori Bruhwiler & Edward J. Dlugokencky & Gustaf Hugelius & Ludovica D’Imperio & Bo Elber, 2020. "Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic," Nature Climate Change, Nature, vol. 10(4), pages 317-321, April.
    5. Jan Nitzbon & Sebastian Westermann & Moritz Langer & Léo C. P. Martin & Jens Strauss & Sebastian Laboor & Julia Boike, 2020. "Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. K. M. Walter Anthony & S. A. Zimov & G. Grosse & M. C. Jones & P. M. Anthony & F. S. Chapin III & J. C. Finlay & M. C. Mack & S. Davydov & P. Frenzel & S. Frolking, 2014. "A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch," Nature, Nature, vol. 511(7510), pages 452-456, July.
    7. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Katey Walter Anthony & Thomas Schneider von Deimling & Ingmar Nitze & Steve Frolking & Abraham Emond & Ronald Daanen & Peter Anthony & Prajna Lindgren & Benjamin Jones & Guido Grosse, 2018. "21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    9. Julian B. Murton & Tomasz Goslar & Mary E. Edwards & Mark D. Bateman & Petr P. Danilov & Grigoriy N. Savvinov & Stanislav V. Gubin & Bassam Ghaleb & James Haile & Mikhail Kanevskiy & Anatoly V. Lozhki, 2015. "Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold‐Climate Loess, Duvanny Yar, Northeast Siberia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 26(3), pages 208-288, July.
    10. Elizabeth E. Webb & Anna K. Liljedahl & Jada A. Cordeiro & Michael M. Loranty & Chandi Witharana & Jeremy W. Lichstein, 2022. "Permafrost thaw drives surface water decline across lake-rich regions of the Arctic," Nature Climate Change, Nature, vol. 12(9), pages 841-846, September.
    11. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    13. Mikhail Mastepanov & Charlotte Sigsgaard & Edward J. Dlugokencky & Sander Houweling & Lena Ström & Mikkel P. Tamstorf & Torben R. Christensen, 2008. "Large tundra methane burst during onset of freezing," Nature, Nature, vol. 456(7222), pages 628-630, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    5. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Jannik Martens & Carsten W. Mueller & Prachi Joshi & Christoph Rosinger & Markus Maisch & Andreas Kappler & Michael Bonkowski & Georg Schwamborn & Lutz Schirrmeister & Janet Rethemeyer, 2023. "Stabilization of mineral-associated organic carbon in Pleistocene permafrost," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Da Wei & Jing Tao & Zhuangzhuang Wang & Hui Zhao & Wei Zhao & Xiaodan Wang, 2024. "Elevation-dependent pattern of net CO2 uptake across China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Stepan Prokopievich Varlamov & Yuri Borisovich Skachkov & Pavel Nikolaevich Skryabin, 2021. "Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley," Land, MDPI, vol. 10(11), pages 1-22, November.
    16. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    19. Andreas Kääb & Julie Røste, 2024. "Rock glaciers across the United States predominantly accelerate coincident with rise in air temperatures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50346-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.